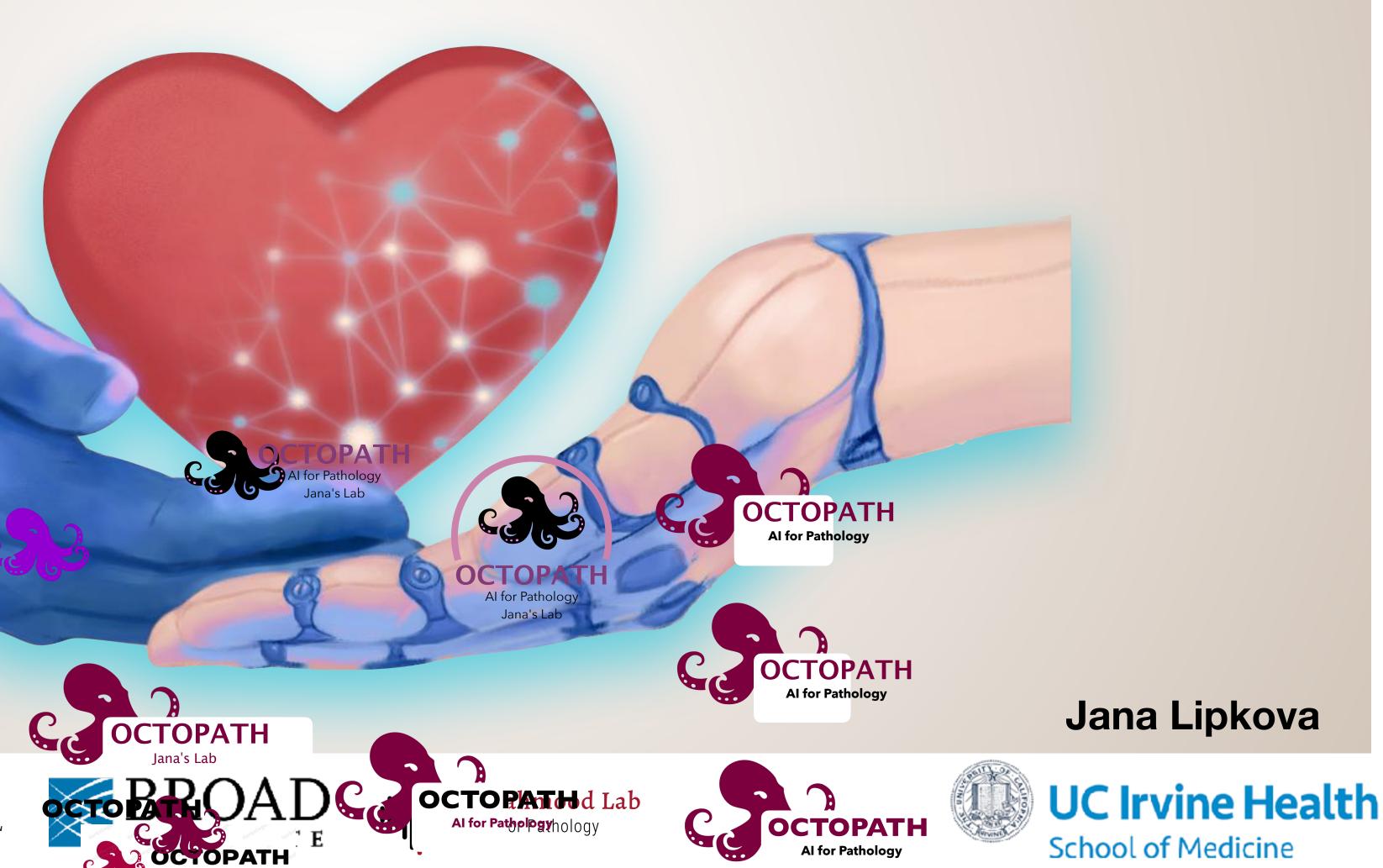
# **Al-based assessment** of cardiac allograft rejections





**BRIGHAM AND** WOMEN'S HOSPITAL





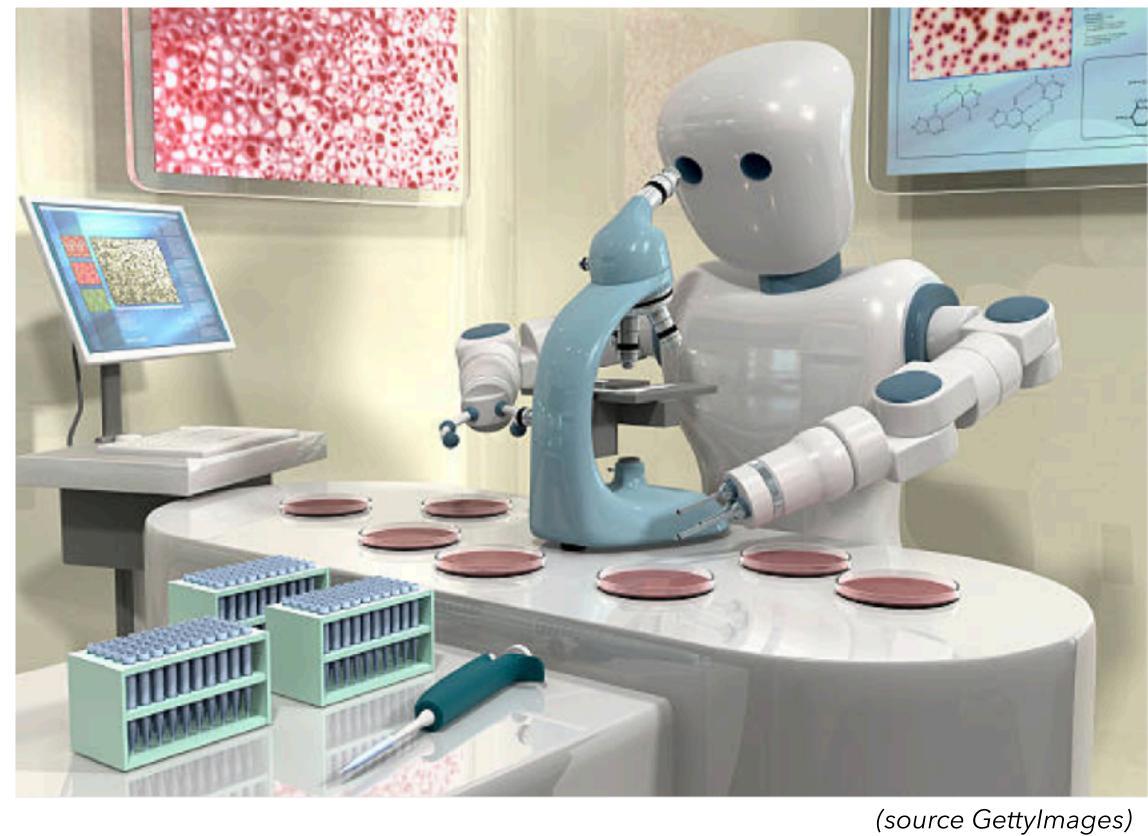
## Background:

- Histopathology data \_
- Cardiac Allograft Rejections \_

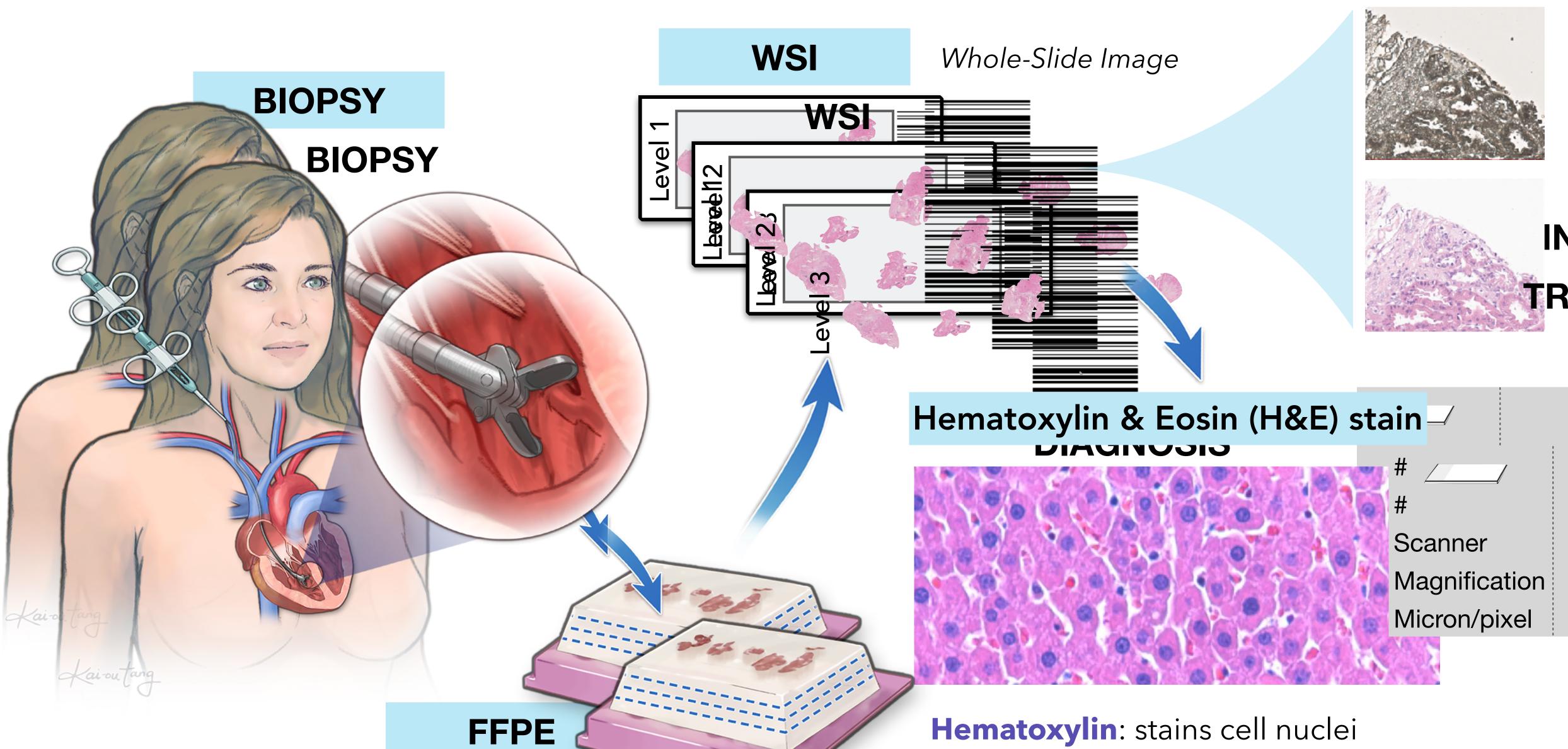
## Al-based assessment of allograft rejections







## Histology 101

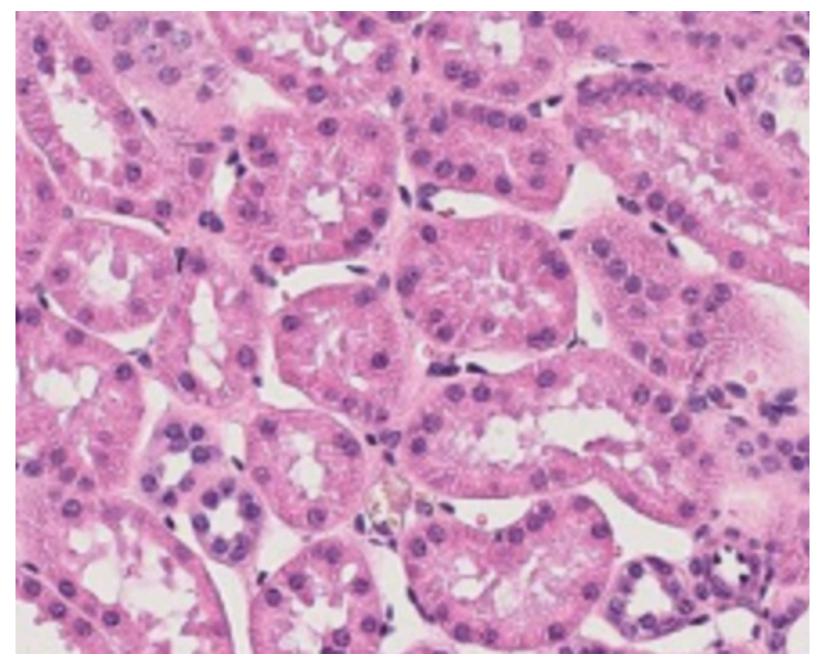


(Formalin-fixated, parafie embedded,

Eosin: the extracellular matrix and cytoplasm

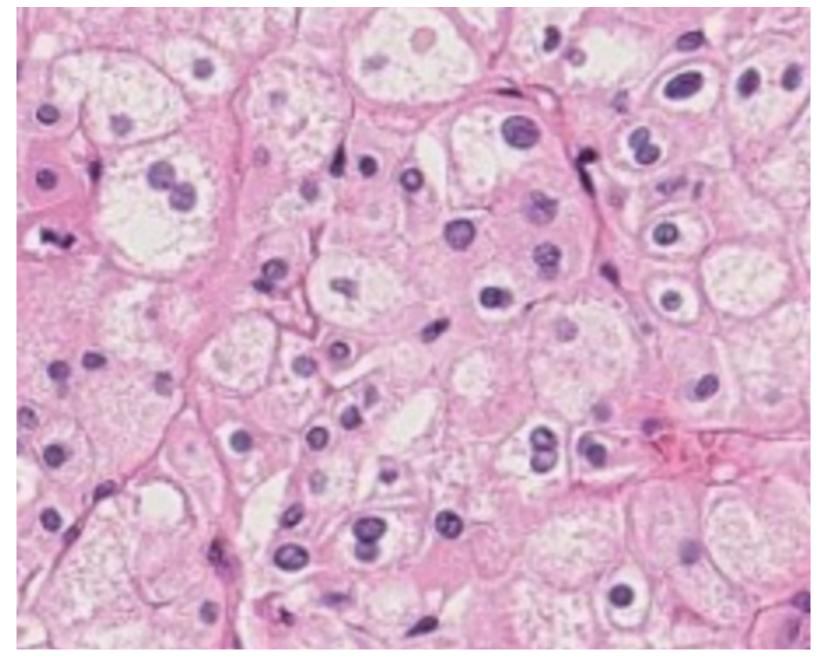
## **Cancer detection/classification 101**

## Normal tissue (kidney)



- Symmetric regular structure
- One nuclei per cell
- Cell/nuclei regular shape

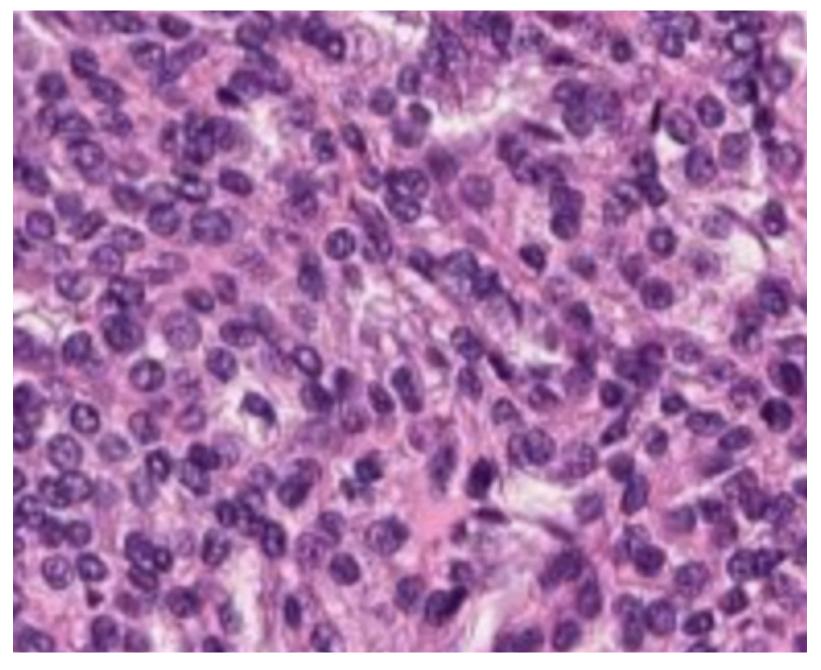
## Chromophobe renal carcinoma



- Enlarged nuclei
- Double nuclei per cell
- Irregular shape

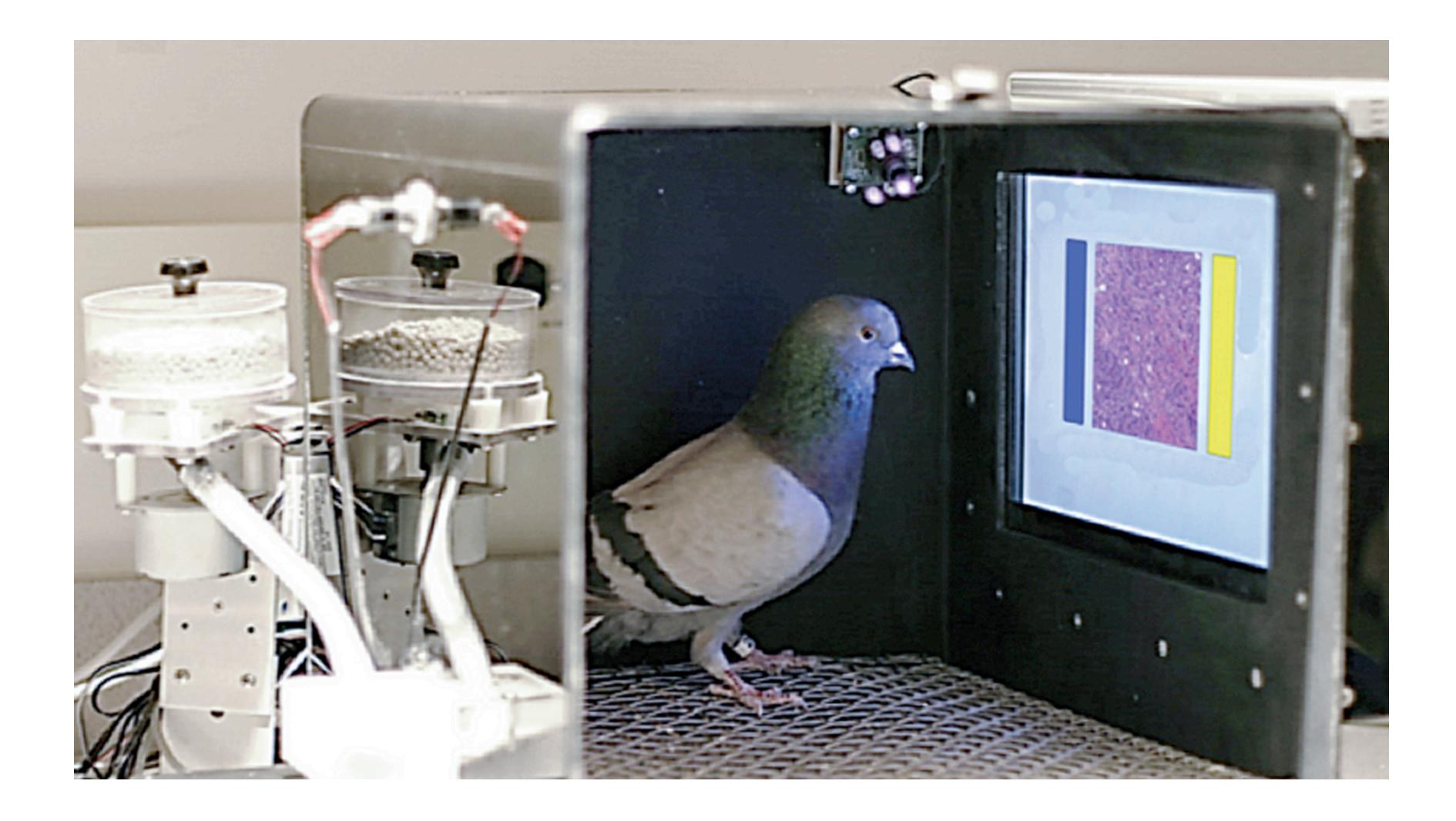
iei ei per cell pe

### Papillary renal carcinoma



- Papillary cores lined by neoplastic cells
- Tubulopapillary architecture

## Fun fact: Also pigeons can detect cancer

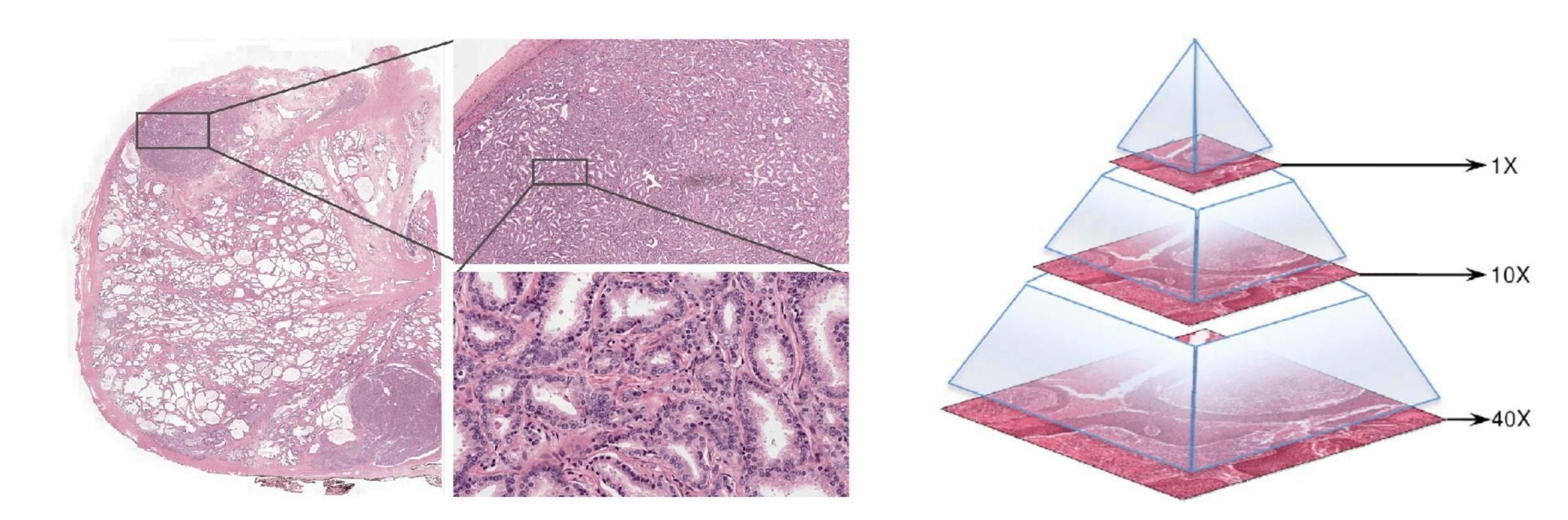


R. Levenson et al: Pigeons (Columba livia) as Trainable Observers of Pathology and Radiology Breast Cancer Images, PloS one, (2015)



## **Digital Pathology: Whole Slide Images (WSIs)**

- High resolution scan of an entire tissue section (0.25 0.5 microns per pixel)
- Gigapixel image: 100,000 x 100,000 pixels
- 100 WSI have cca same amount of pixels as whole ImageNet
- Different Stains: H&E, IHC

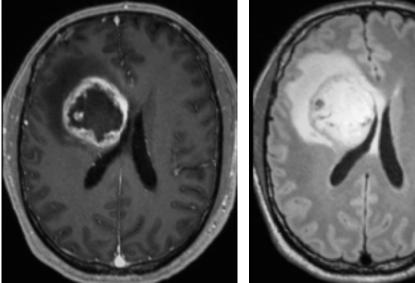




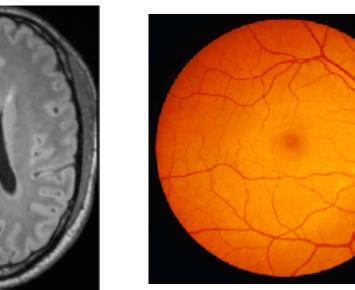
## **Medical Data**

## Radiology

## Photography



(MRI head scan)





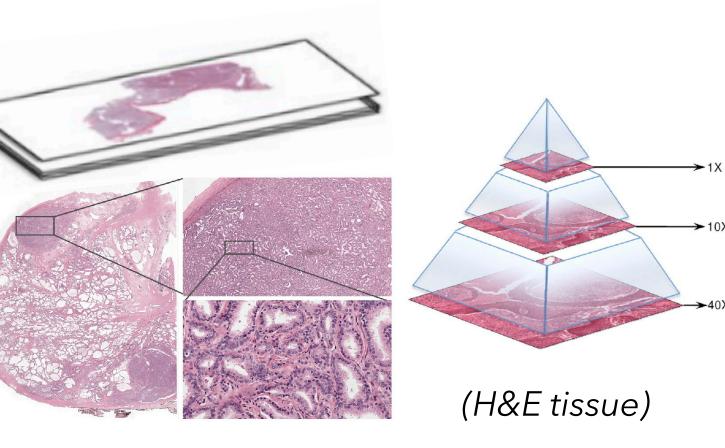
(Fundus / skin photography)

- 3D images
- gray-scale images
- resolution: ~1 mm
- size: 256x256x256 voxels

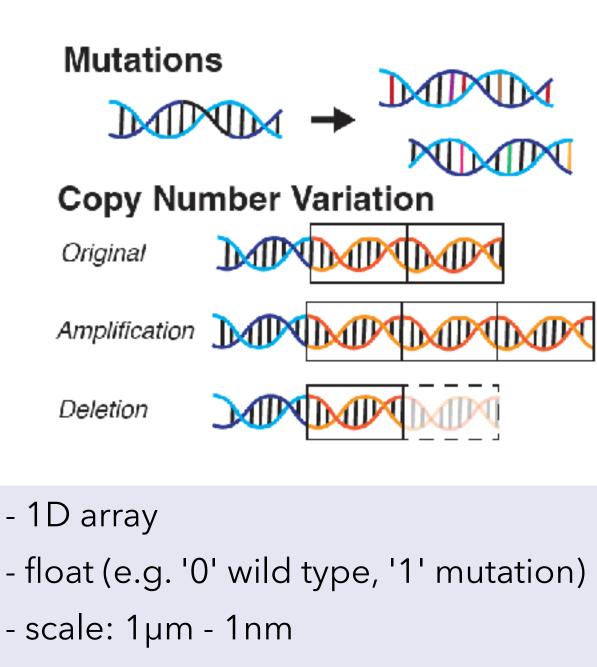
- 2D images
- RGB
- 10 µm 1 mm
- size: ~1,700x1,700 pixels

- 2D images
- RGB
- scale: ~0.1µm
- 100,000x100,000 pixels
- (varies with magnification, tissue size etc)

## Histology

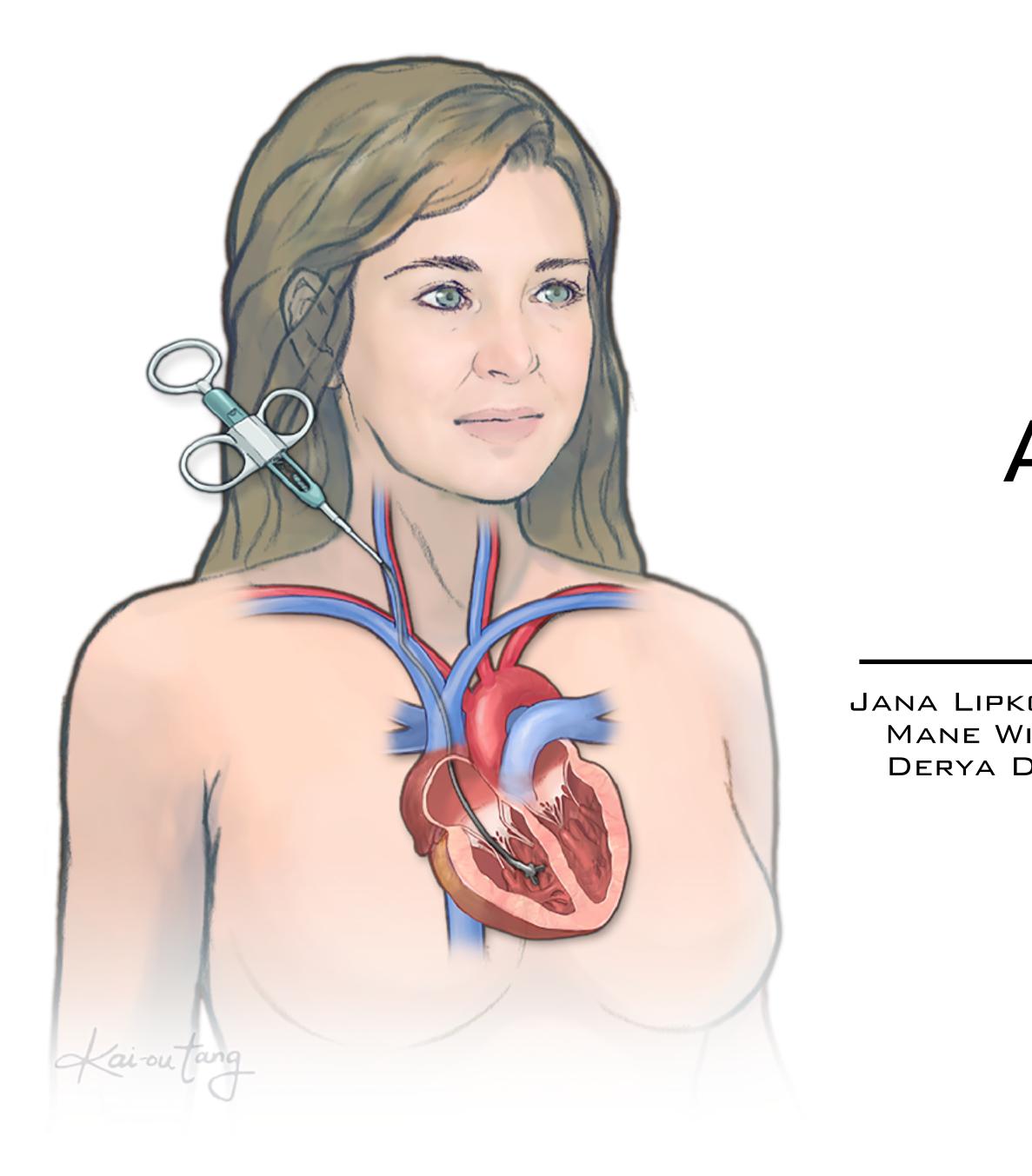


## Genomics



- 1D array
- scale: 1µm 1nm
- ~20,000 protein-coding genes





# Al-Assessment of Cardiac Allograft Rejections

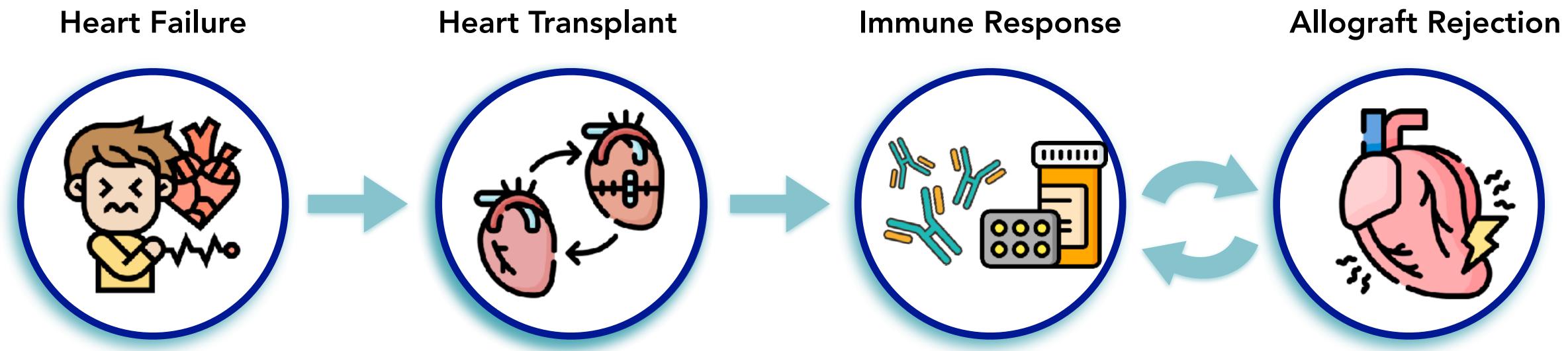
JANA LIPKOVA, TIFFANY Y CHEN, MING Y LU, JINGWEN WANG, MAHA SHADY, MANE WILLIAMS, RICHARD MITCHELL, MEHMET TURAN, GULFIZE COSKUN, Derya Demir, Deniz Nart, Funda Y Barbet, Katja E Odening, Yara BANZ, FAISAL MAHMOOD

Lipkova et al. Nature Medicine (2022)





# BACKGROUND



- Leading cause of hospitalization in USA/EU
- 26 million cases / year

- Patients with end-stage failure
- 5000 transplants / year

- Immunosuppressives
- Patient-specific set-up

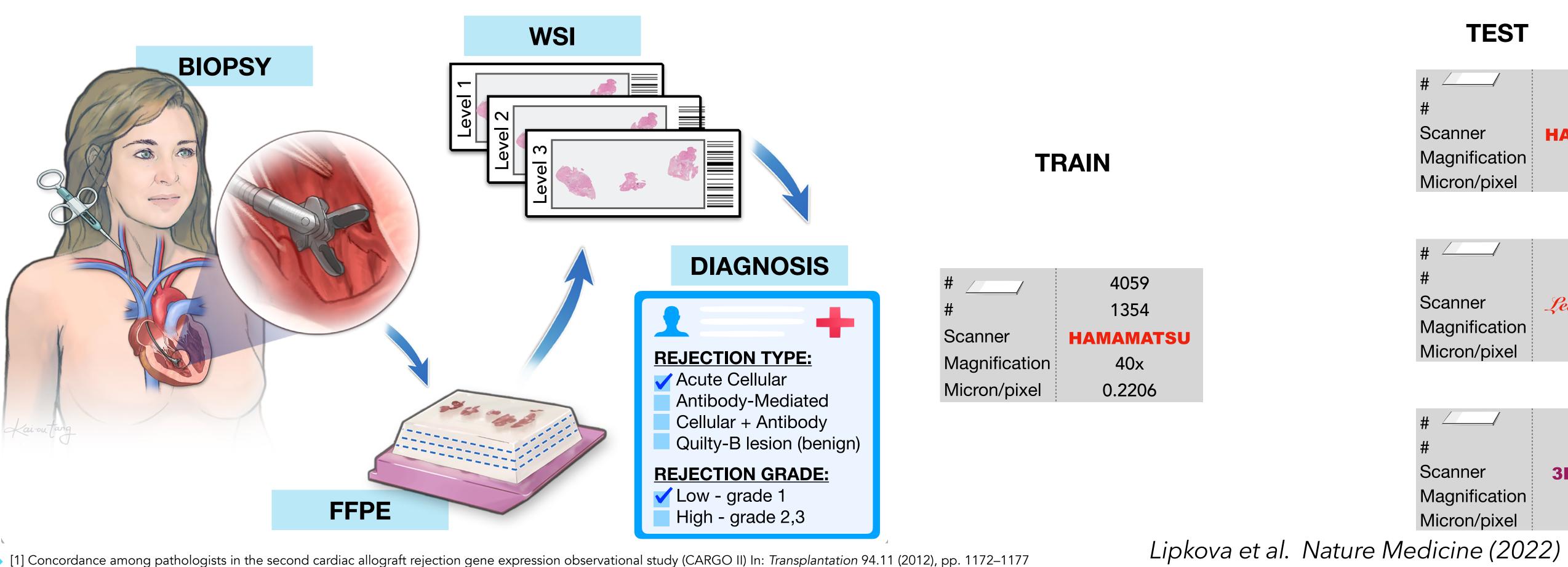
- Main complication & main cause of death
- 40% recipients



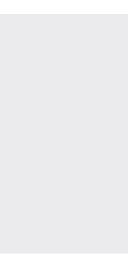
# MOTIVATION

#### **APPLICATION:**

- Early stages of rejections are **asymptomatic** → surveillance **Endomyocardial biopsy** (EMB)
- Gold-standard: manual assessment H&E-stained biopsies:
- Rejection type & grade determines the immunosuppressive treatment regime

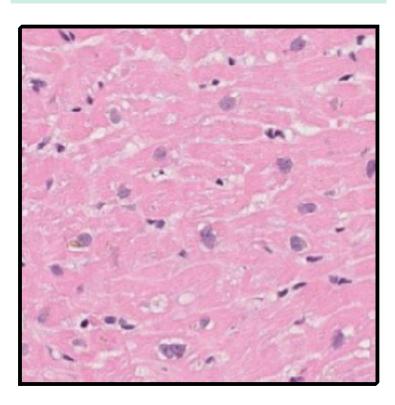


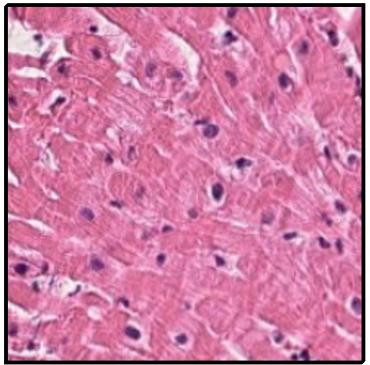
detection and subtyping of rejections (acute cellular, antibody-mediate, benign mimickers) and grading (I-III)

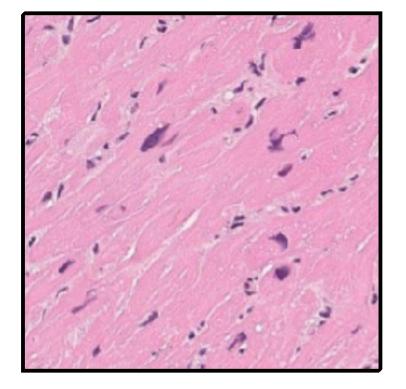


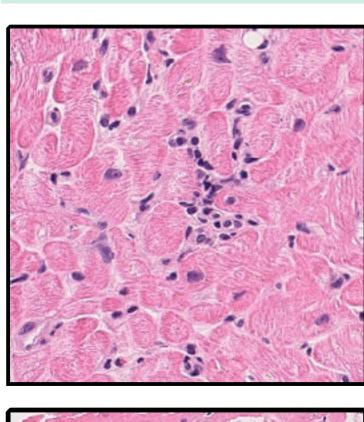
## **101: Rejection Types**

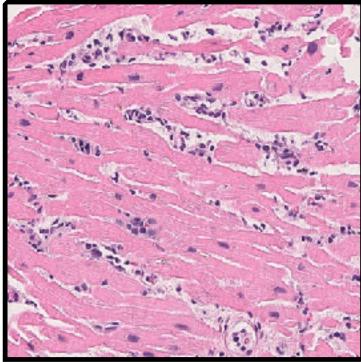
#### Normal tissue

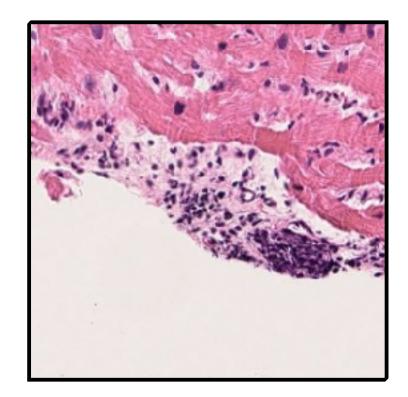




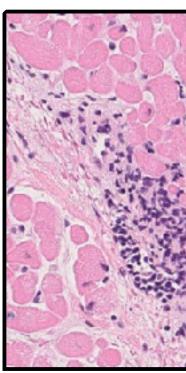


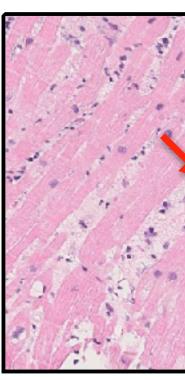


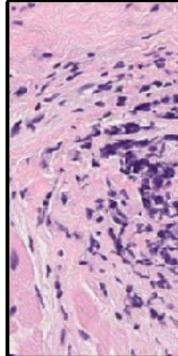


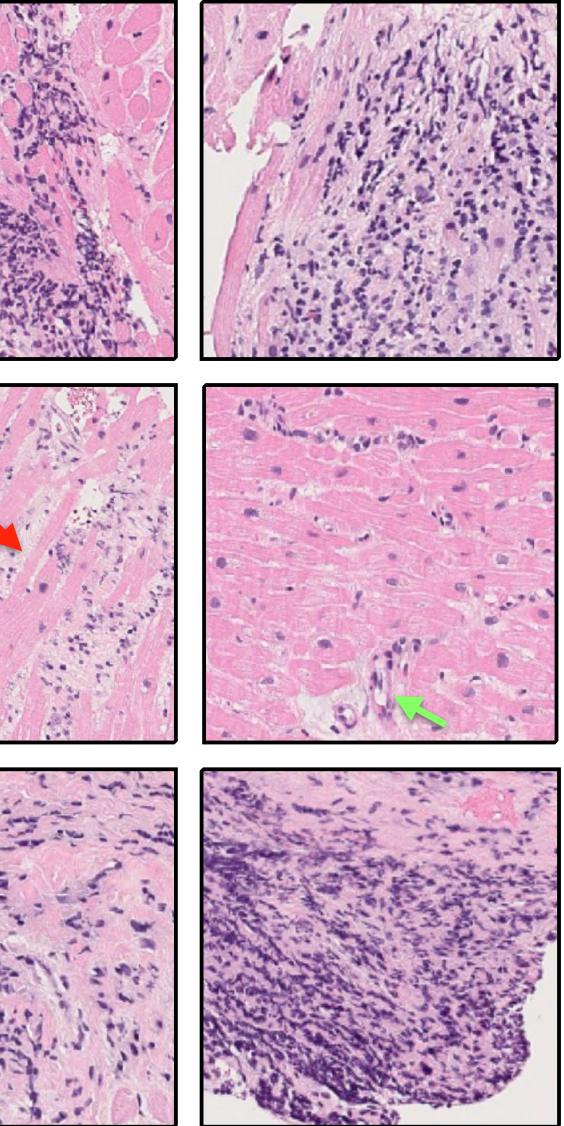


#### **Abnormal tissue**









### **Acute Cellular**

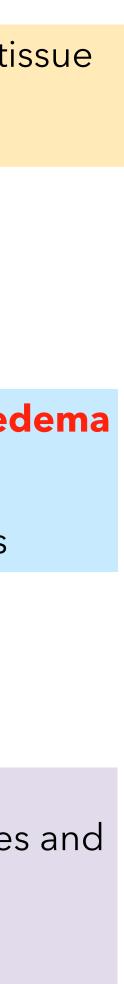
- Lymphocyte infiltrates in muscle tissue
- Homogenous structure Comprised of T-cells

#### **Antibody Mediated**

- Increased extracellular space + **edema Capillary** endothelial **changes** Increase cell damage More macrophages and necrosis

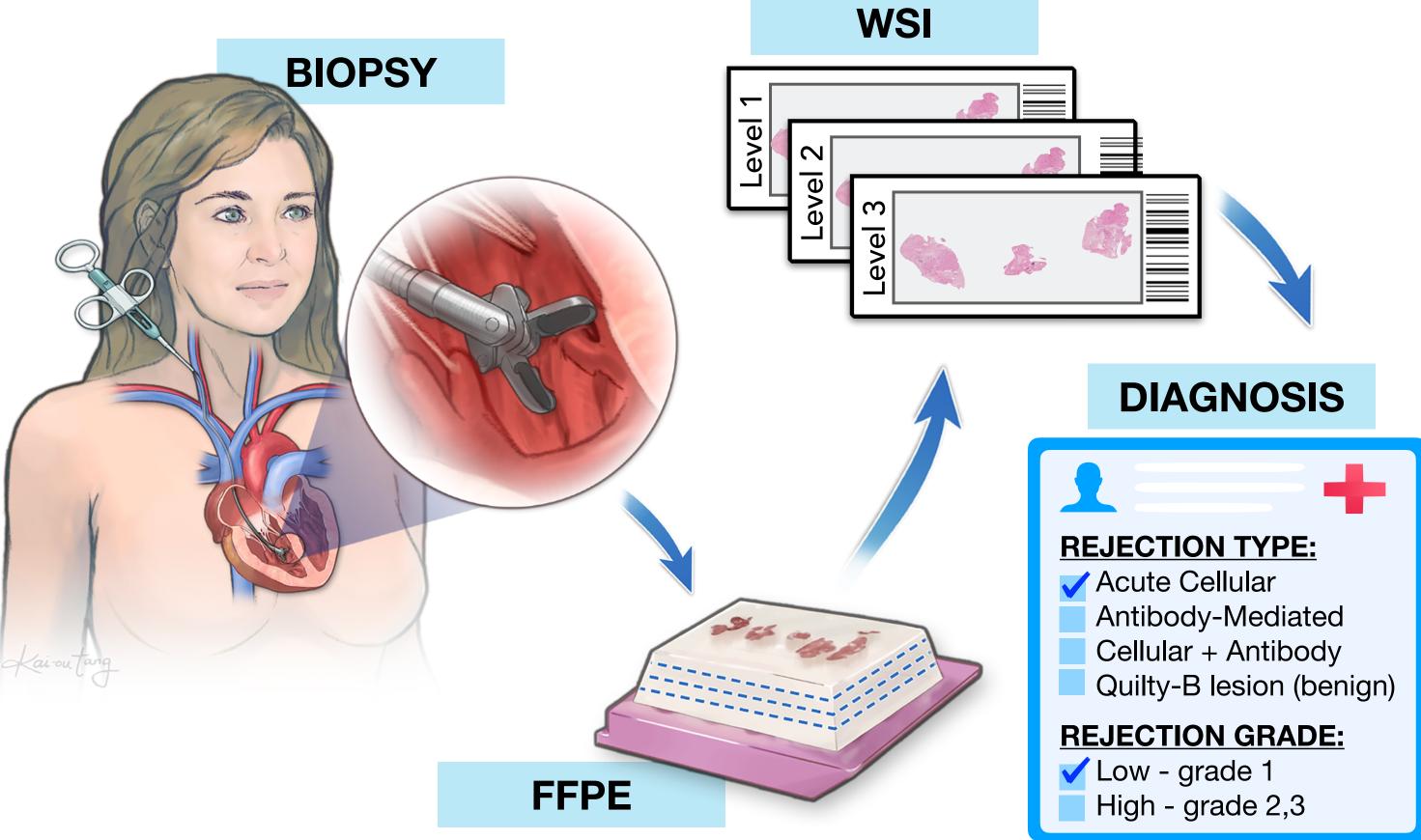
### **Quilty B Lesions**

- Benign lesions
- Mixed B and T-cells, macrophages and plasma cells
- commonly mistaken for cellular rejections



# MOTIVATION

- Early stages of rejections are **asymptomatic** → surveillance **Endomyocardial biopsy** (EMB) Gold-standard: manual assessment H&E-stained biopsies:
  - detection and subtyping of rejections (acute cellular, antibody-mediate, benign mimickers) and grading (I-III)
- Rejection type & grade determines the immunosuppressive treatment regime



[1] Concordance among pathologists in the second cardiac allograft rejection gene expression observational study (CARGO II) In: Transplantation 94.11 (2012), pp. 1172–1177

#### **CHALLENGES:**

#### Substantial inter-rater variability [1]:

- <71 % agree if recipient is rejecting the heart
- <28 % agree on the grade of advance rejections
- 19 % unable to reach majority agreement

#### **Misinterpretation**:

- under/over treatment with immunosuppressives
- unnecessary follow-up biopsies

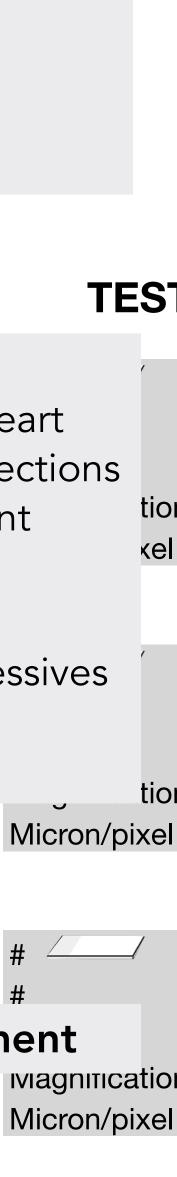
#### worse outcomes

| Scanner       | HAMAMATSU |   |
|---------------|-----------|---|
| Magnification | 40x       | N |
| Micron/pixel  | 0.2206    |   |

#### AIM:

**Objective and automated EMBs assessment** 

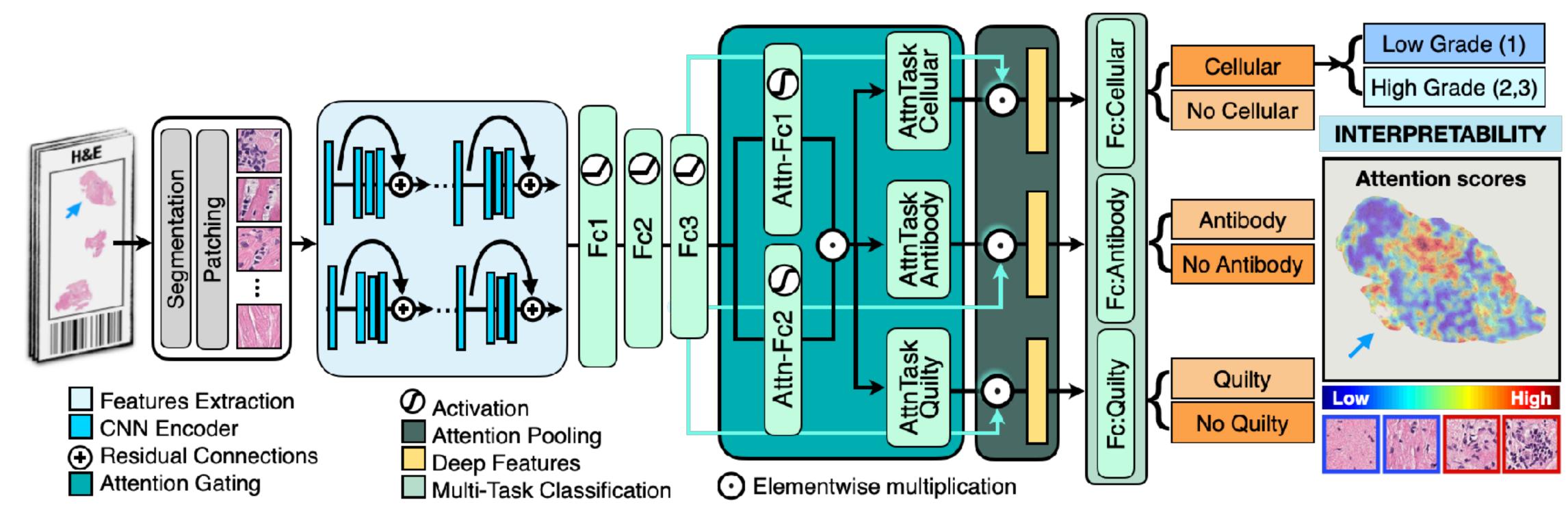
#### DDEDICTIONIC





# **Cardiac Rejection Assessment Neural Estimator**

- **Input:** H&E-stained EMBs whole-slide-images (WSIs)
- Multi-task, multi-label model: simultaneously identifies presence and type of the rejection (cellular, antibody, and/or quilty lesions). Separate classifier estimate rejection grade
- Multiple-instance learning: use patient diagnosis as only label
- (avoid pixel-level annotations, supports large-scale deployment)
- Attention scores, reflecting relevance of each biopsy region, enable visual interpretation of the model's predictions





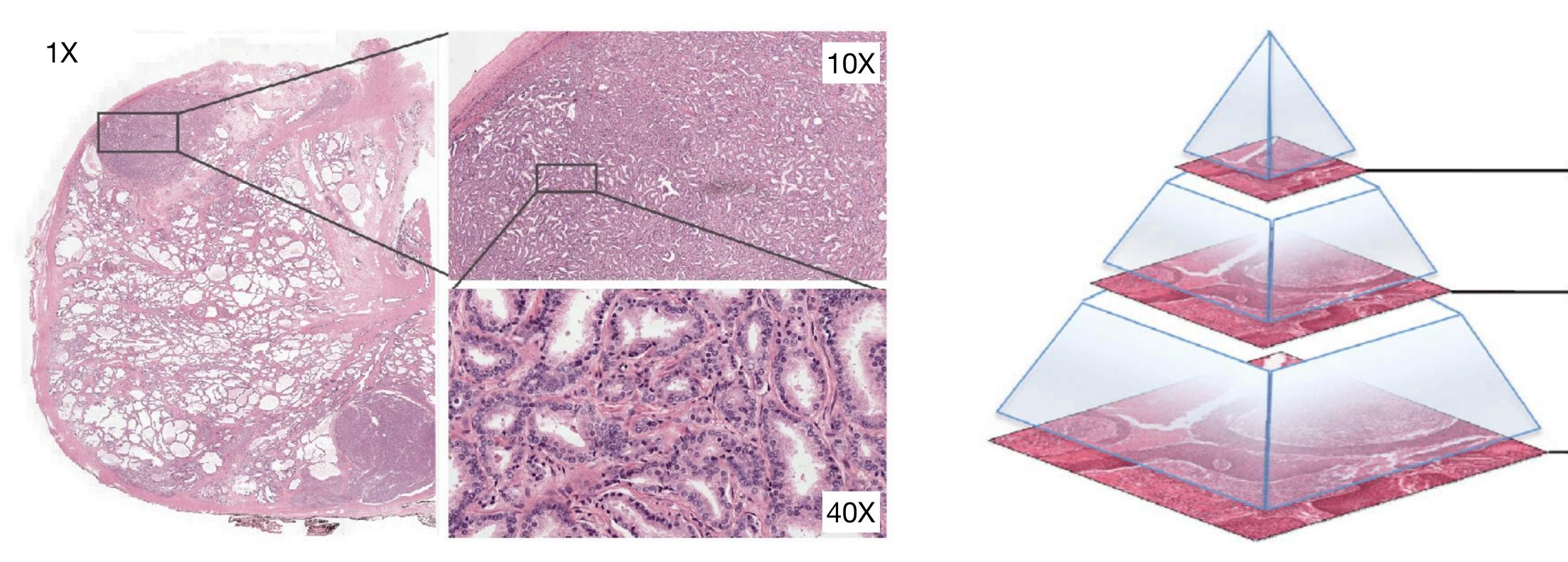
Lipkova et al. Nature Medicine (2022)





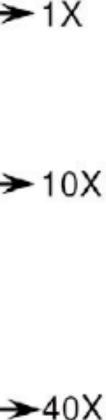
## **Digital Pathology: Whole Slide Images (WSIs)**

- 1 WSI ~ 1 billion pixels !!!
- 100 WSI has more pixels than <u>whole</u> ImageNet
- Difficult to train AI directly on WSI

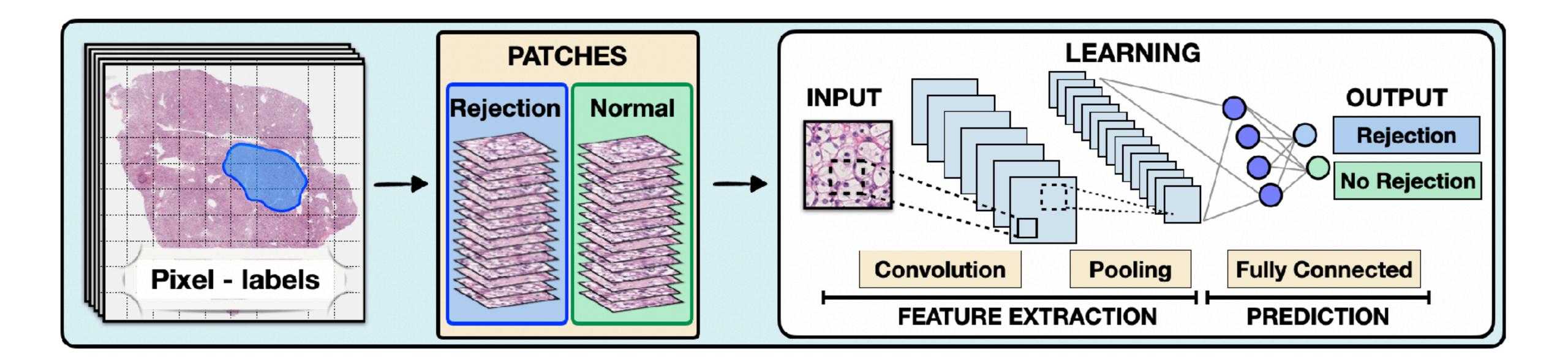


## - High resolution scan of an entire tissue section (0.25 - 0.5 microns per pixel)





## **Typical Deep Learning for Pathology**

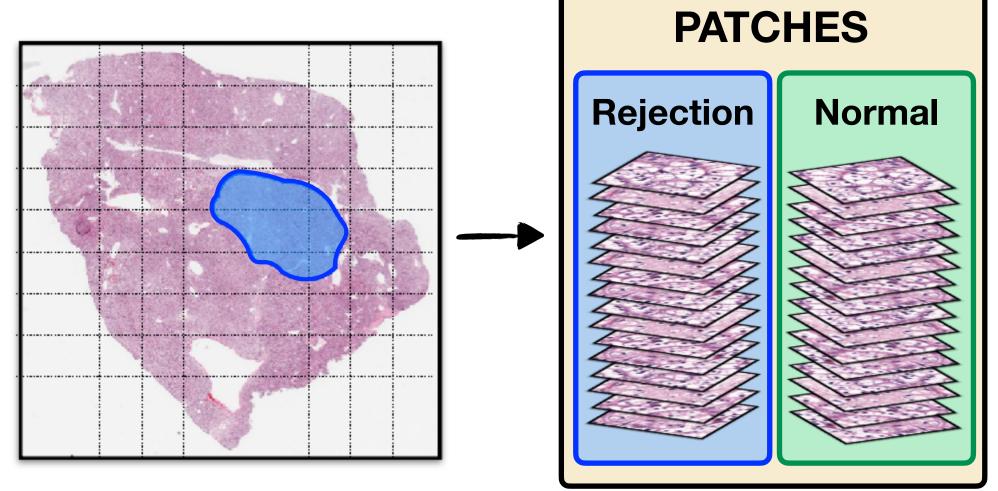


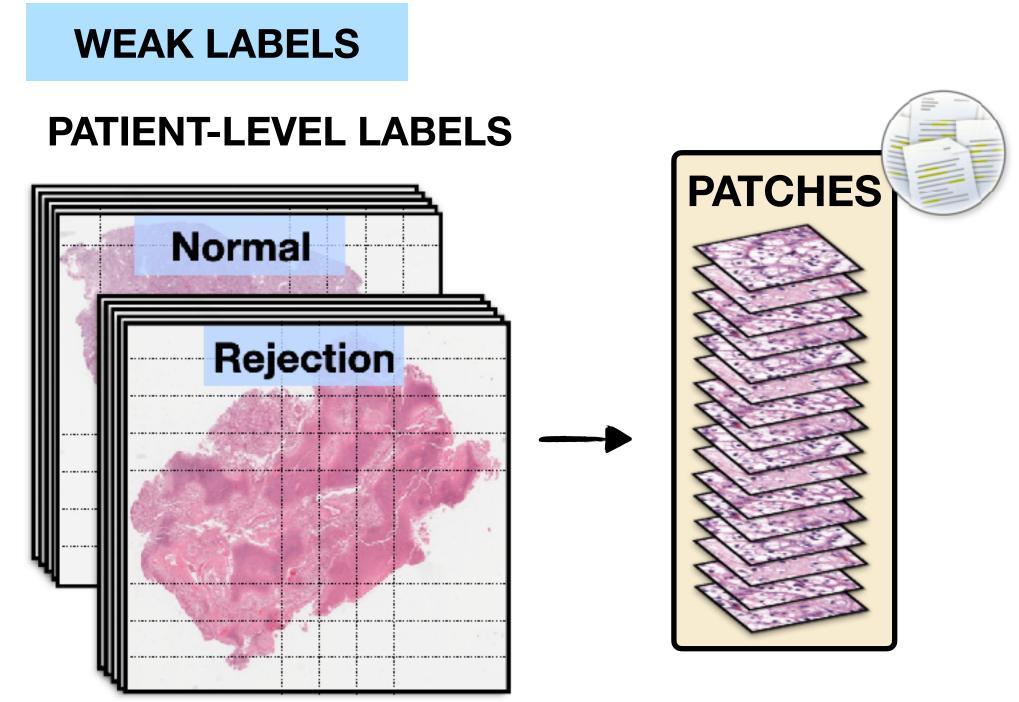
Laborious and time consuming to annotate gigapixels large histology images
Disease borders not always well defined → inter-rater variability → bias
Predictive regions for some tasks (e.g. treatment response) might be unknown
Possible data imbalance: small proportion of image contain the disease (needle-in-haystack problem)
Image annotation is not part of standard clinical practice

## **Strong vs Weak Supervision**

#### STRONG LABELS

#### **PATCH-LEVEL LABELS**





Model alone must discover which tissue regions and which features are predictive for rejections.

## **Analogy with Natural Images**

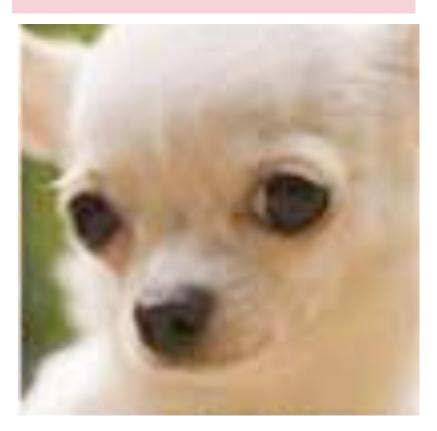
#### **STRONG LABELS**

### Label for each input

Muffin



#### Chihuahua



#### WEAK LABELS

## Label for bag of inputs

#### **Contains Chihuahua**

#### No Chihuahua



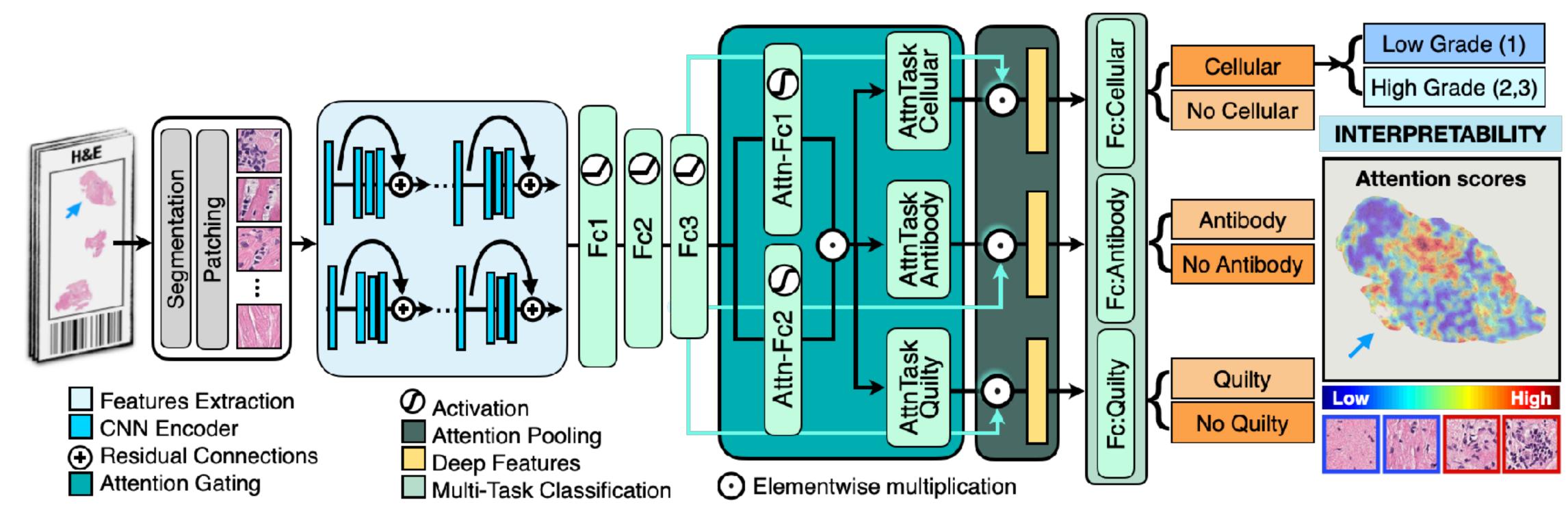
# The model alone has to discover which image items and features correspond to chihuahua





# **Cardiac Rejection Assessment Neural Estimator**

- **Input:** H&E-stained EMBs whole-slide-images (WSIs)
- Multi-task, multi-label model: simultaneously identifies presence and type of the rejection (cellular, antibody, and/or quilty lesions). Separate classifier estimate rejection grade
- Multiple-instance learning: use patient diagnosis as only label
- (avoid pixel-level annotations, supports large-scale deployment)
- Attention scores, reflecting relevance of each biopsy region, enable visual interpretation of the model's predictions



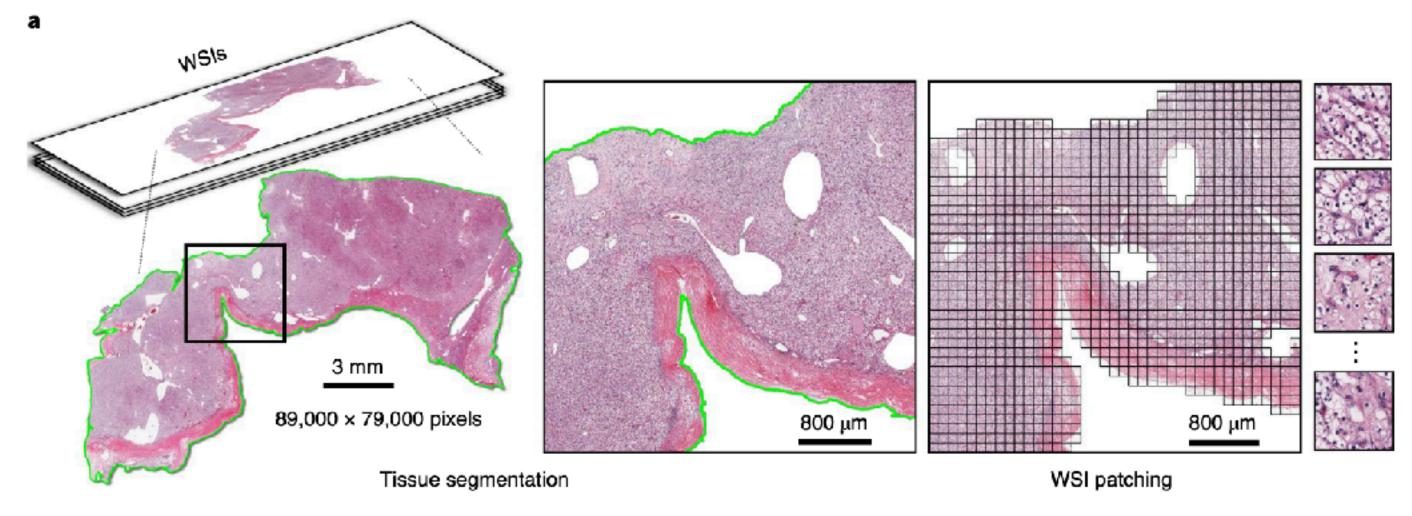


Lipkova et al. Nature Medicine (2022)

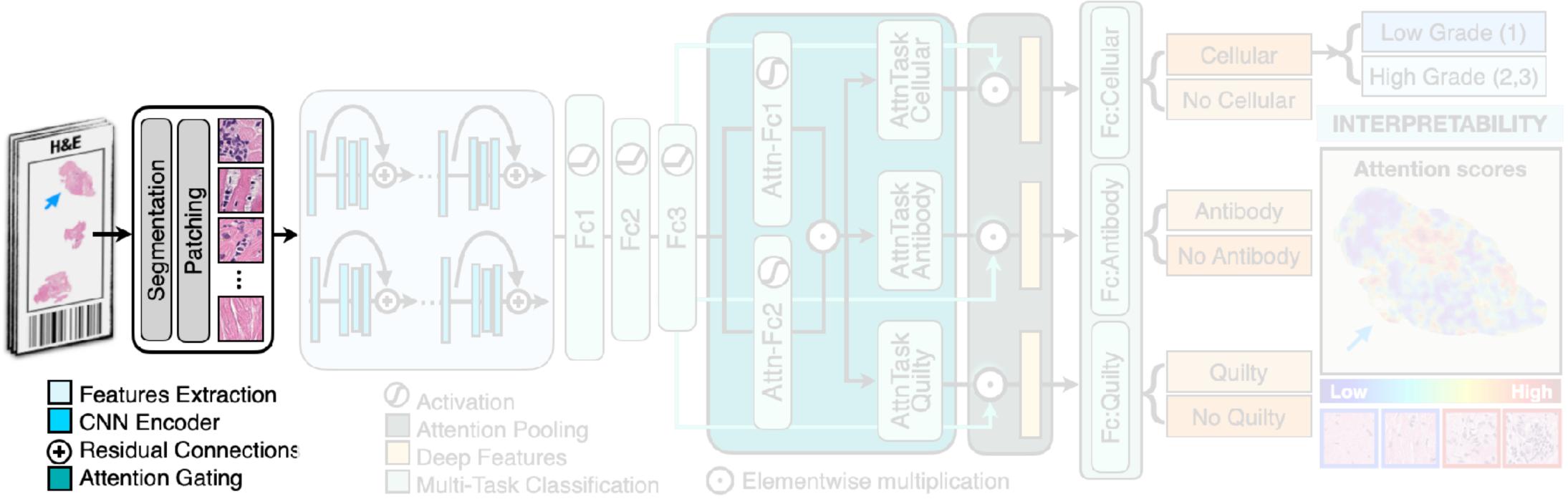




#### PREPROCESSING

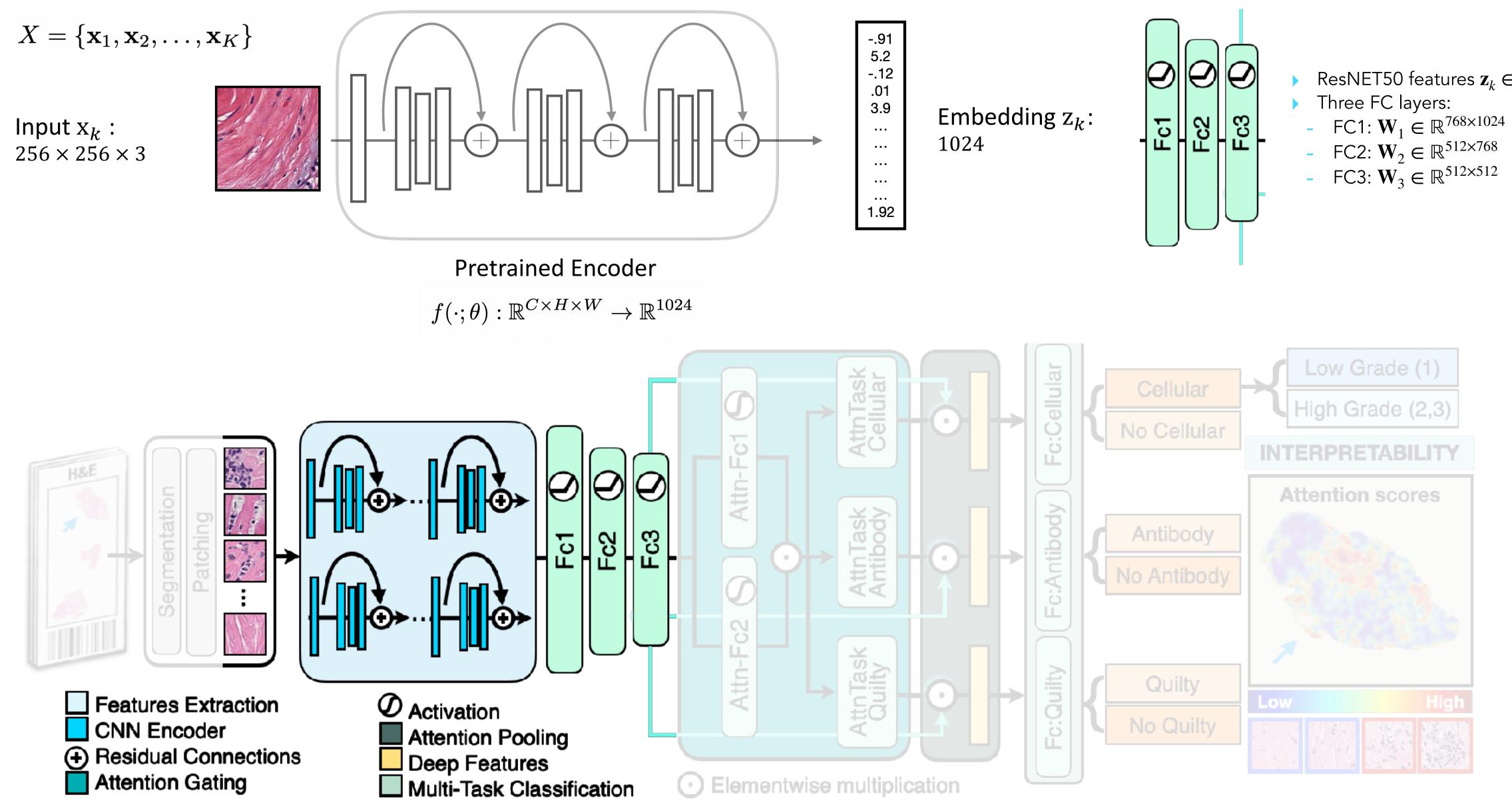


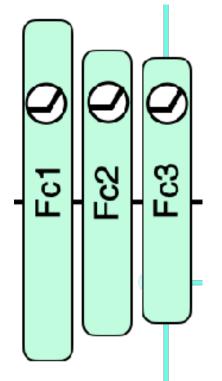
#### $\approx$ 1 Billion Pixels!



#### **EMBEDDINGS**

Patch-level representation of patch k from {1,...,K}

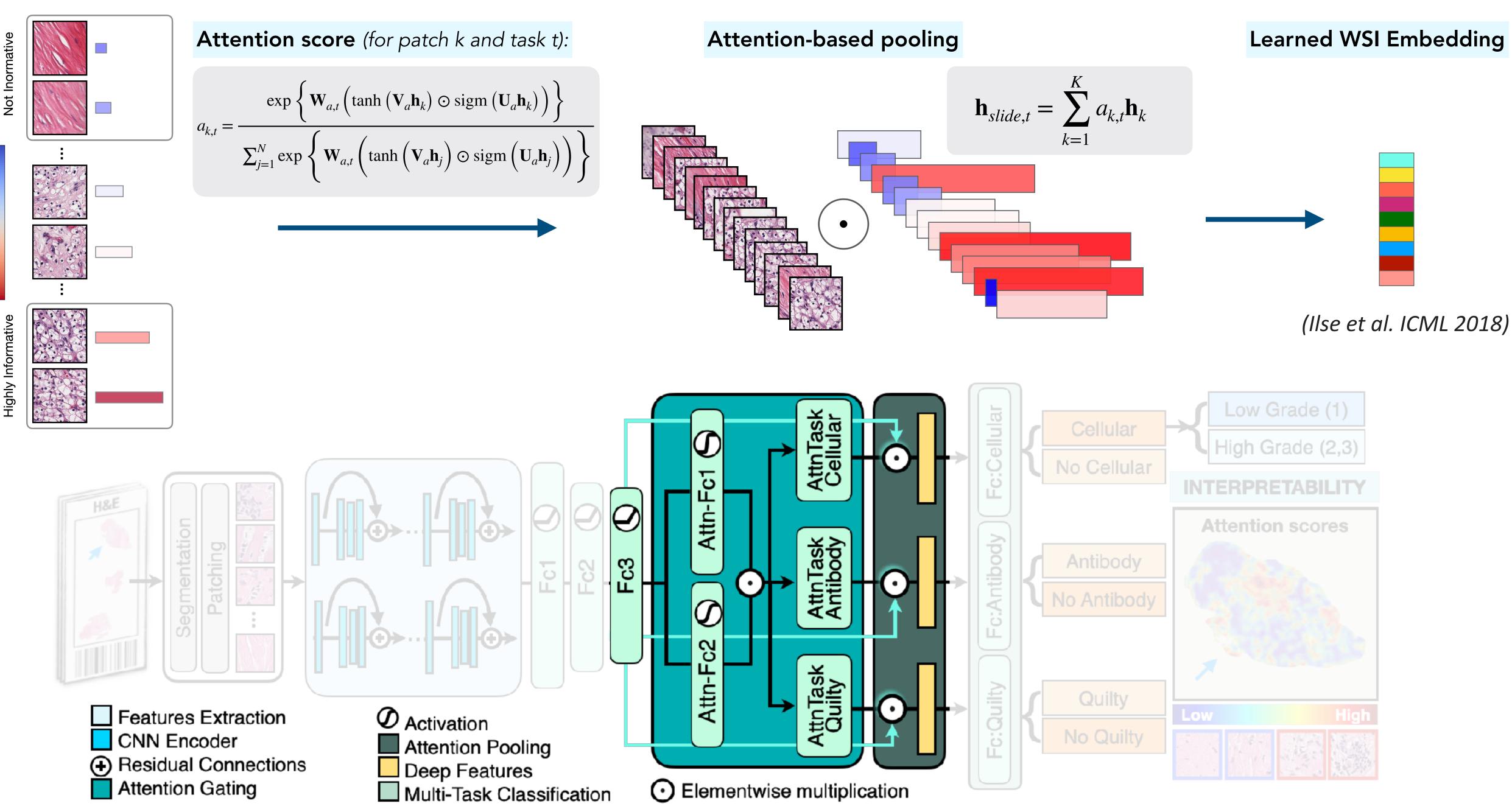




- ResNET50 features  $\mathbf{z}_k \in \mathbb{R}^{1024}$

- FC2:  $\mathbf{W}_2 \in \mathbb{R}^{512 \times 768}$

#### **ATTENTION LEARNING**



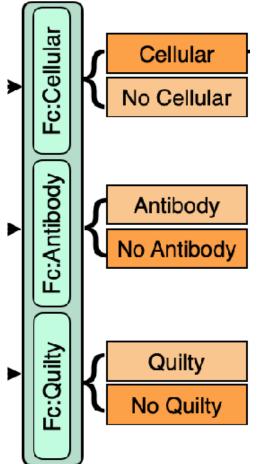
#### Learned WSI Embedding





#### **MULTI-TASK CLASSIFIER**

#### Learned WSI Embedding



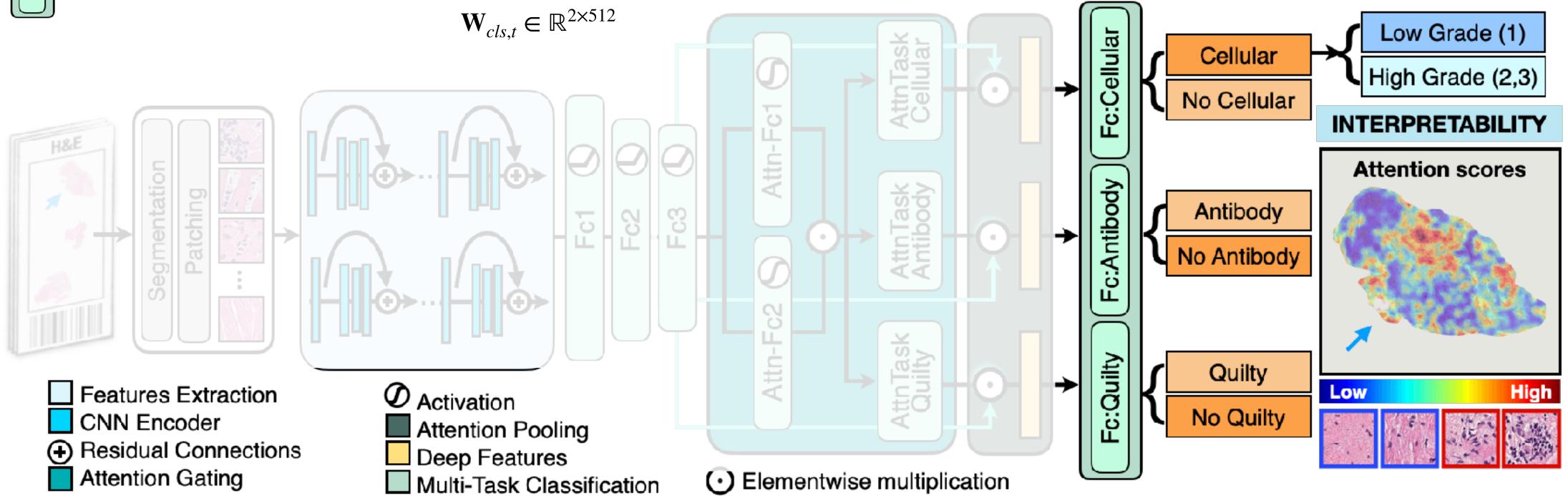
Slide-level representations for task *t*:

$$\mathbf{h}_{slide,t} = \sum_{k=1}^{K} a_{k,t} \mathbf{h}_{k}$$

Slide-level predictions for task t:

 $\mathbf{p}_{t} = \text{Softmax}(\mathbf{W}_{cls,t} \,\mathbf{h}_{slide,t} + \mathbf{b}_{cls,t})$ 

$$\mathbf{W}_{cls,t} \in \mathbb{R}^{2 \times 512}$$



#### **REJECTION GRADE**

Same MIL model, just single-task

### **INTERPRETABILITY**

WSI attention heatmaps

• Elementwise multiplication

# Study Design



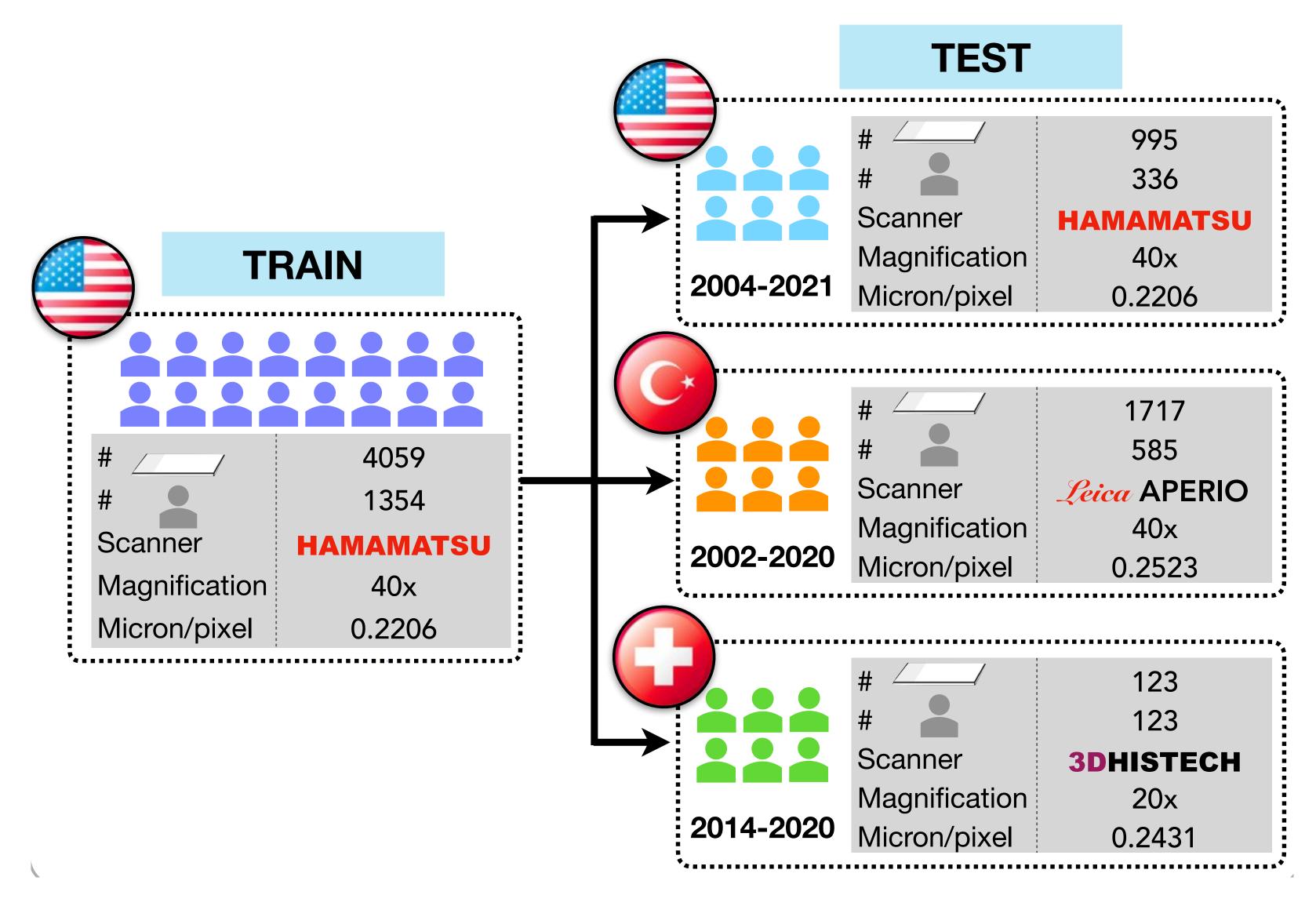
- micron/pixel,
- etc

The model is trained on subset of data collected in USA

70/10/20% split (balance diagnosis)

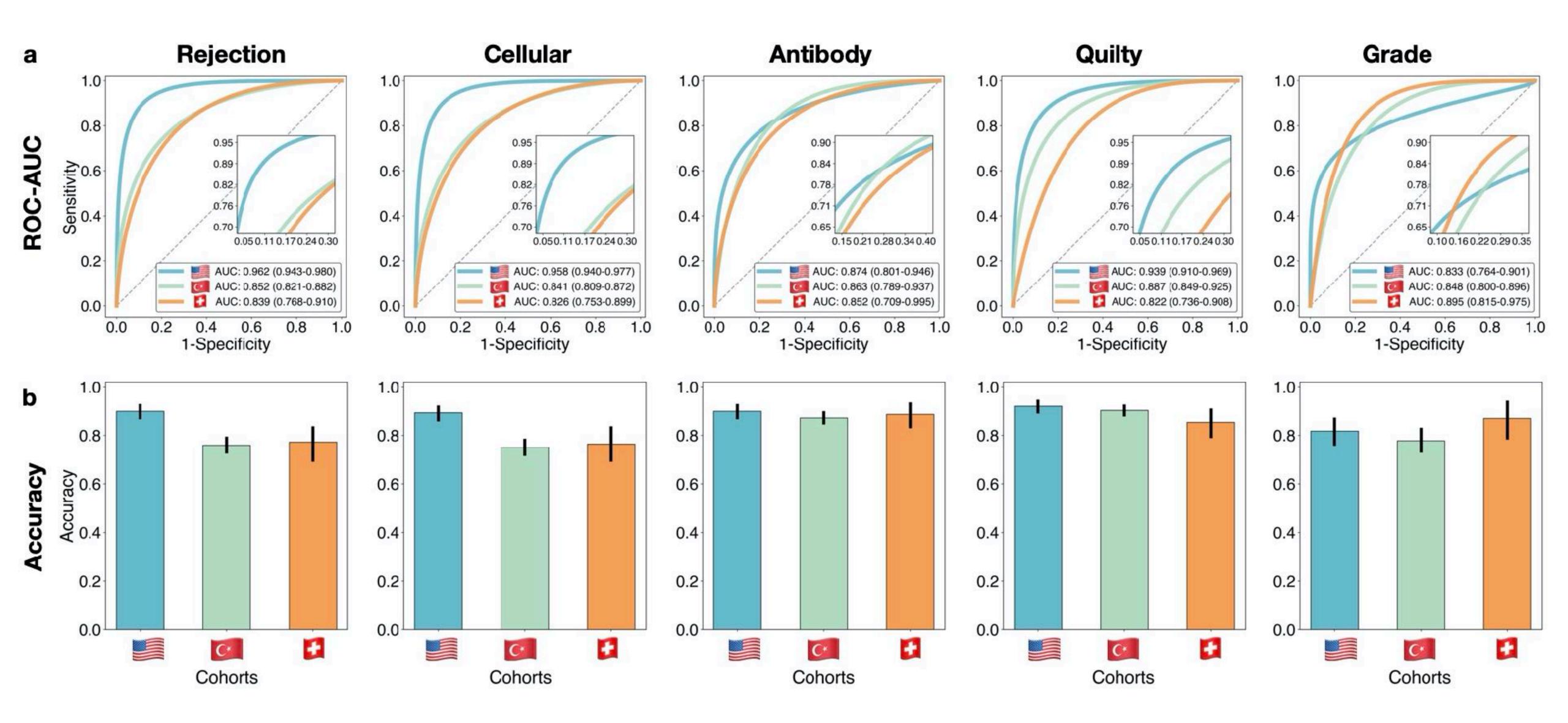
to external cohorts

domain-specific adaptations



PREDICTIONS Lipkova et al. Nature Medicine (2022)

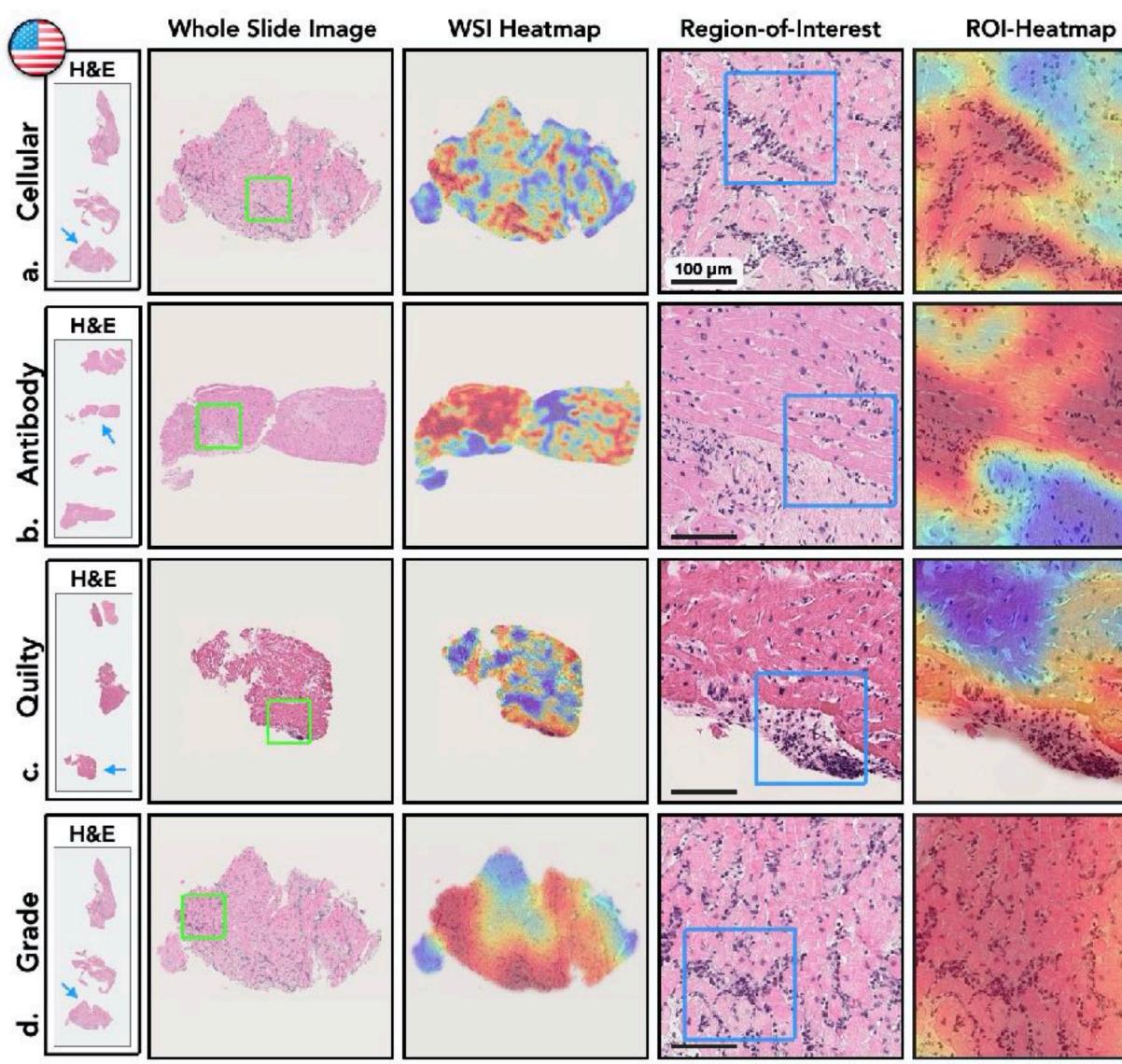
## **Evaluation & Results**



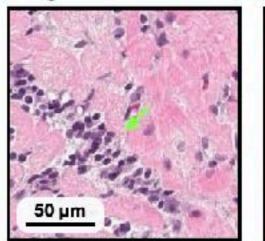
Lipkova et al. Nature Medicine (2022)

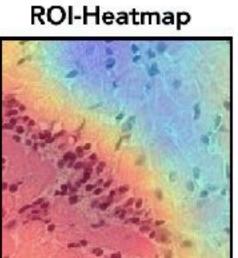


# Interpretability

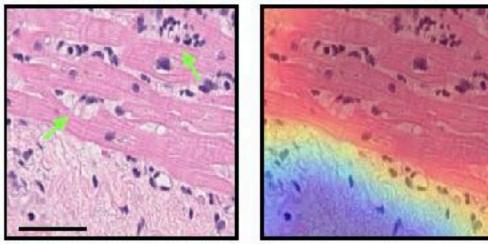


#### Region-of-Interest

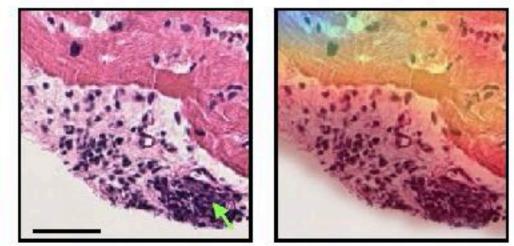




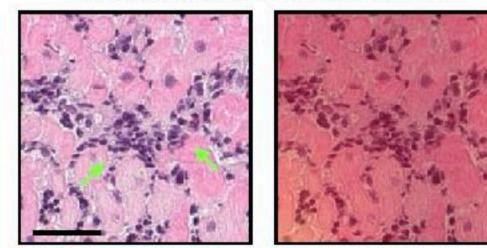
Interstitial lymphocytic infiltrate with myocyte damage



ial edema with mixed inflammatory infiltrate



Dense, benign, endocardial lymphocytic infiltrate



Multifocal myocyte injury with diffuse mixed inflammatory

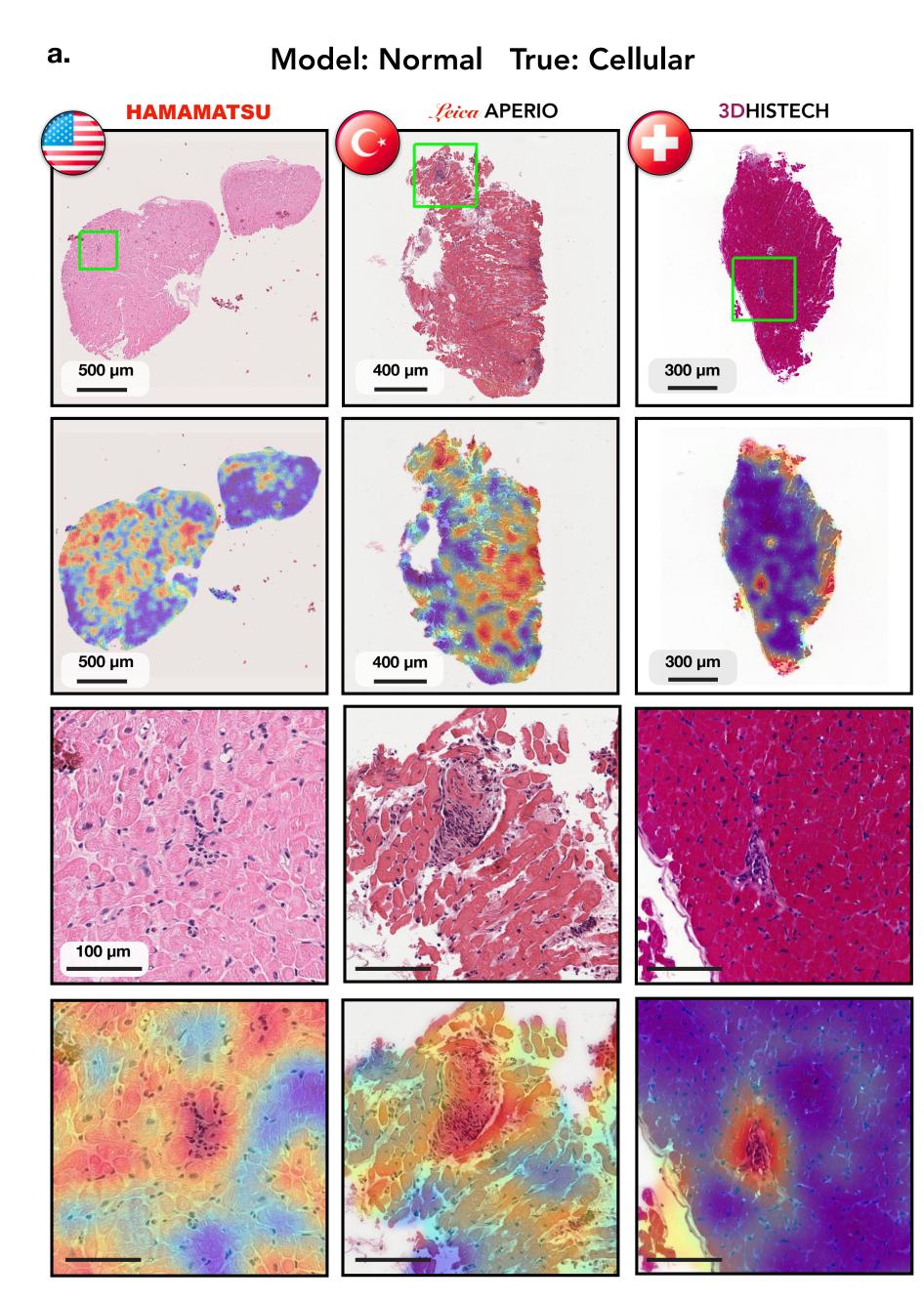
- High-attention (red) regions correspond to rejection morphology used by pathologist for diagnosis
- Low-attention (blue) scores are assigned mostly to **benign tissue**

#### Lipkova et al. Nature Medicine (2022)

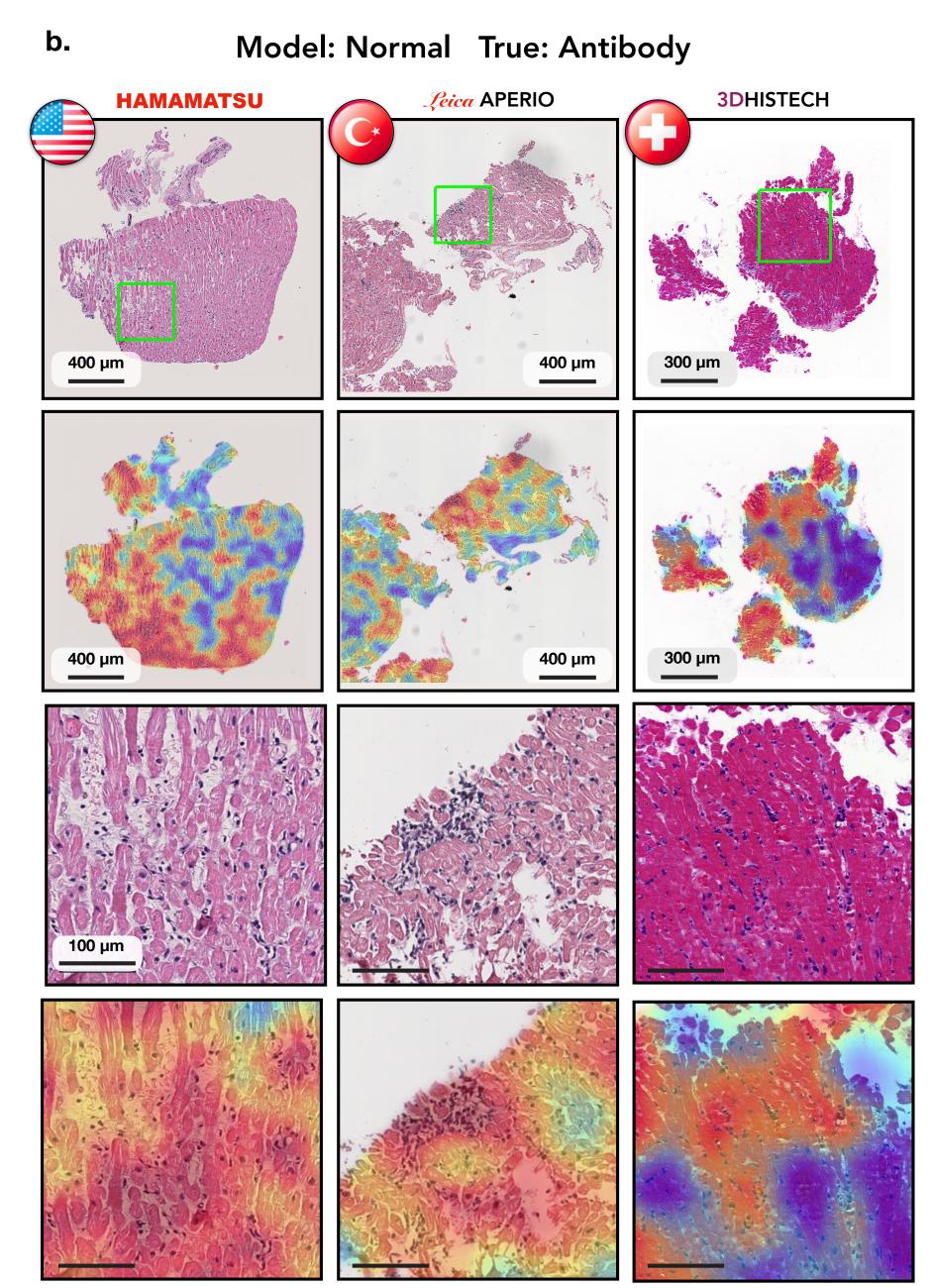




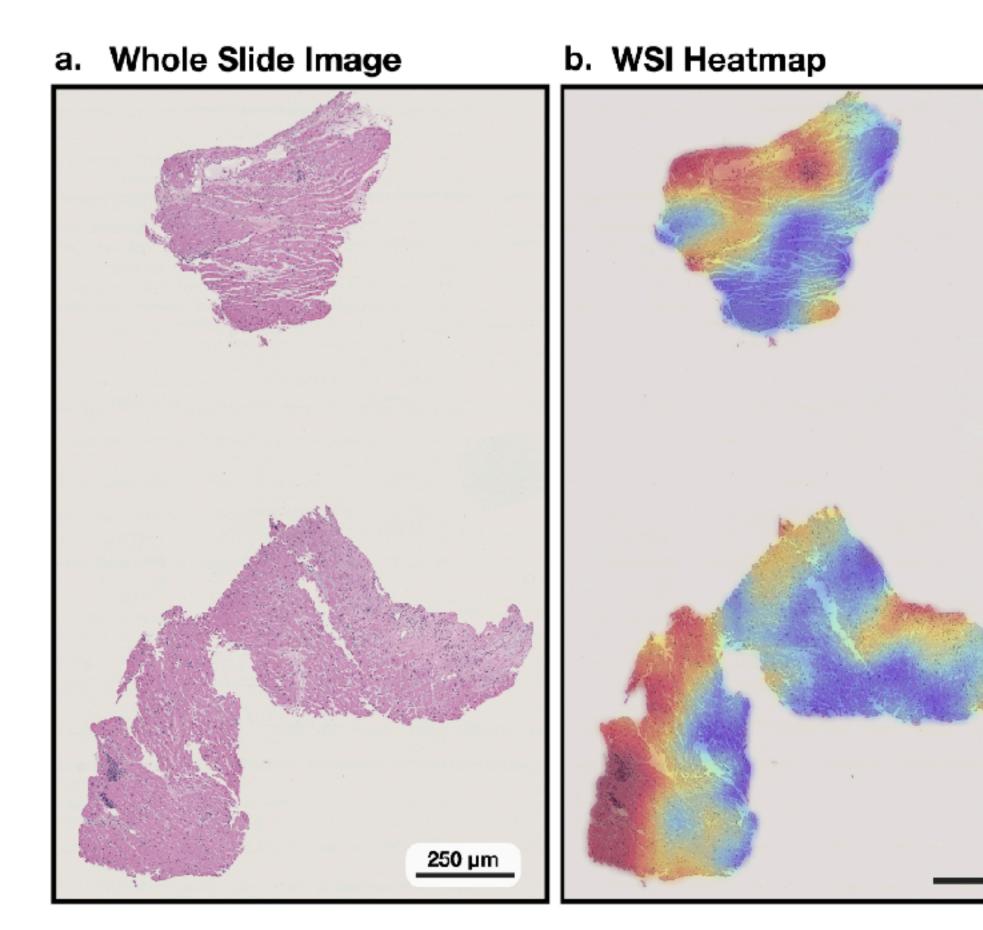




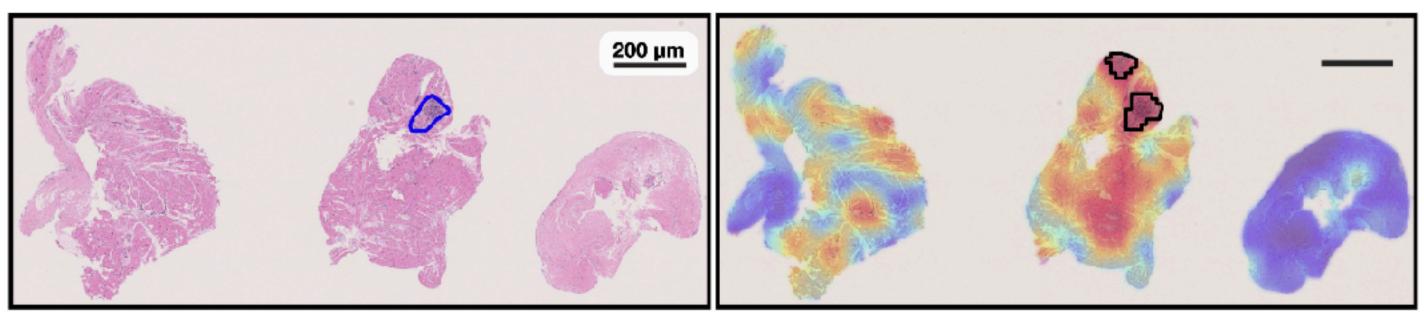
## **Assessment of Failure Cases**



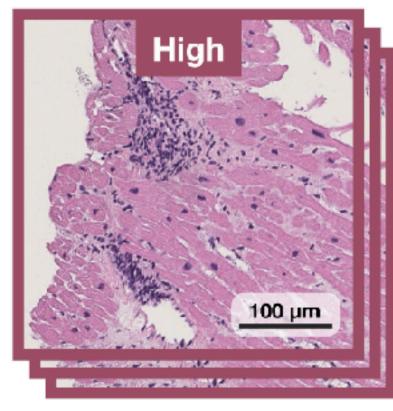
## **Quantitative Assessment of Interpretability**

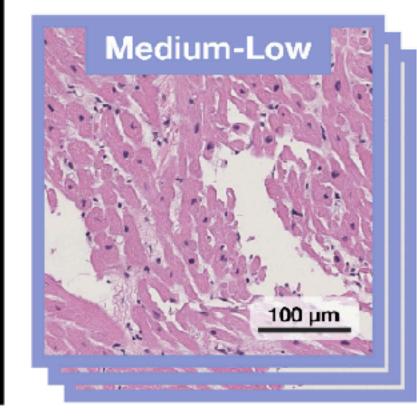


#### f. Pathologist annotation



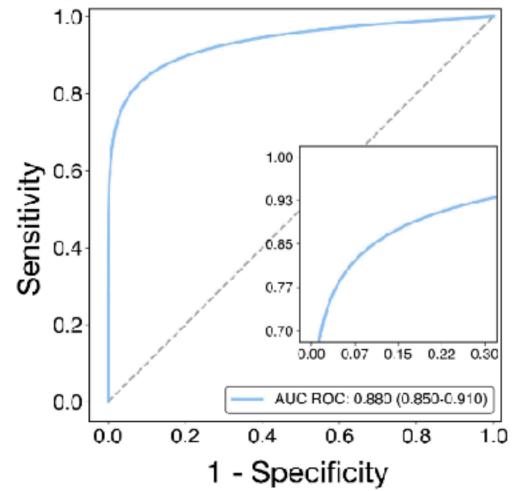
c. Patches





g. High-attention regions

d. Diagnostic Relevance

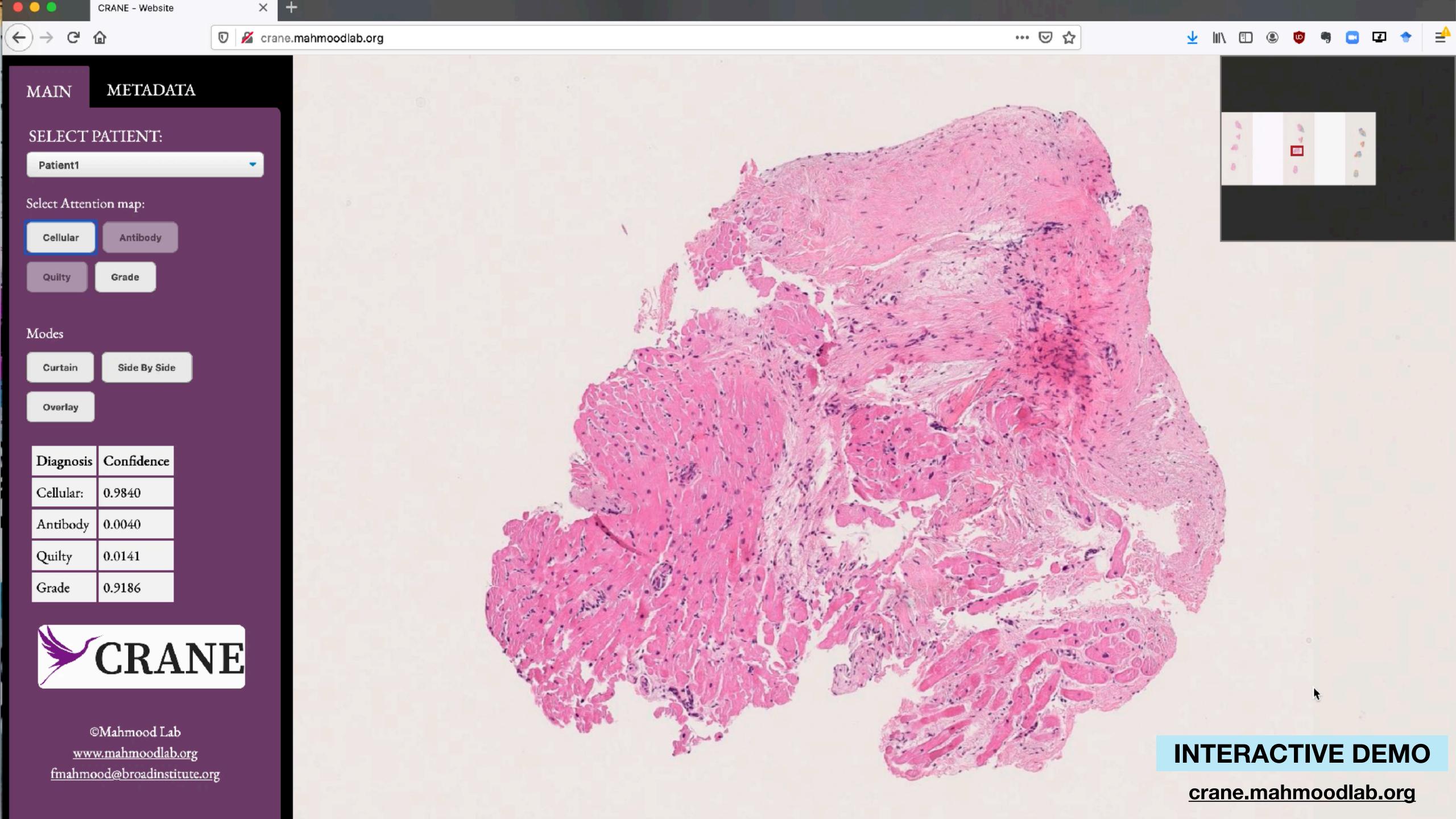


#### e. Patch-Level Scores

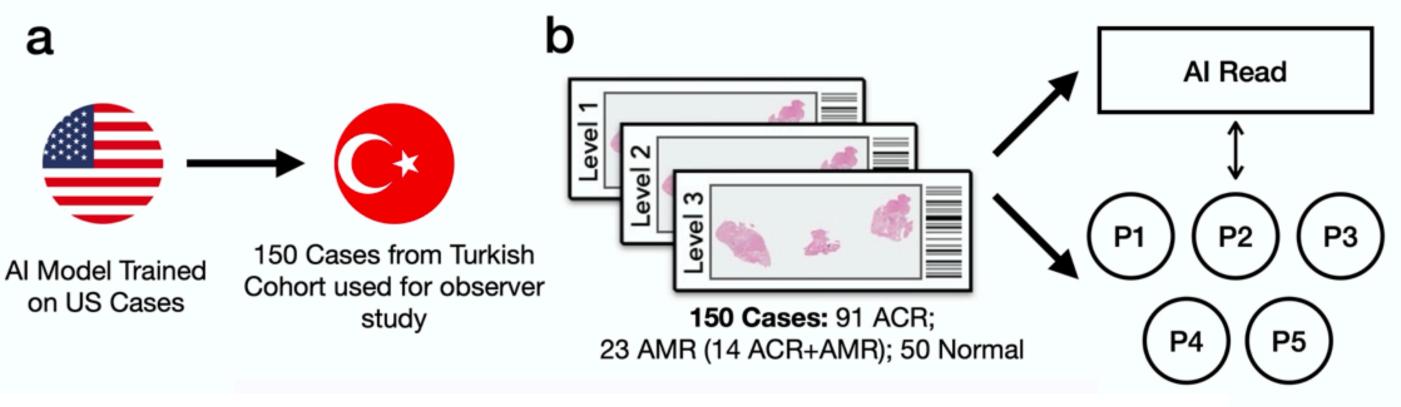
| Tasks:   | Accuracy | <b>F1</b> | κ     |
|----------|----------|-----------|-------|
| All      | 0.873    | 0.855     | 0.744 |
| Cellular | 0.925    | 0.914     | 0.848 |
| Antibody | 0.902    | 0.911     | 0.802 |
| Quilty   | 0.809    | 0.729     | 0.596 |

#### h. Slide-Level Scores

| Tasks:   | <b>Detection rate</b> |
|----------|-----------------------|
| All      | 0.922                 |
| Cellular | 0.942                 |
| Antibody | 0.901                 |
| Quilty   | 0.924                 |



## **Comparison with human readers**



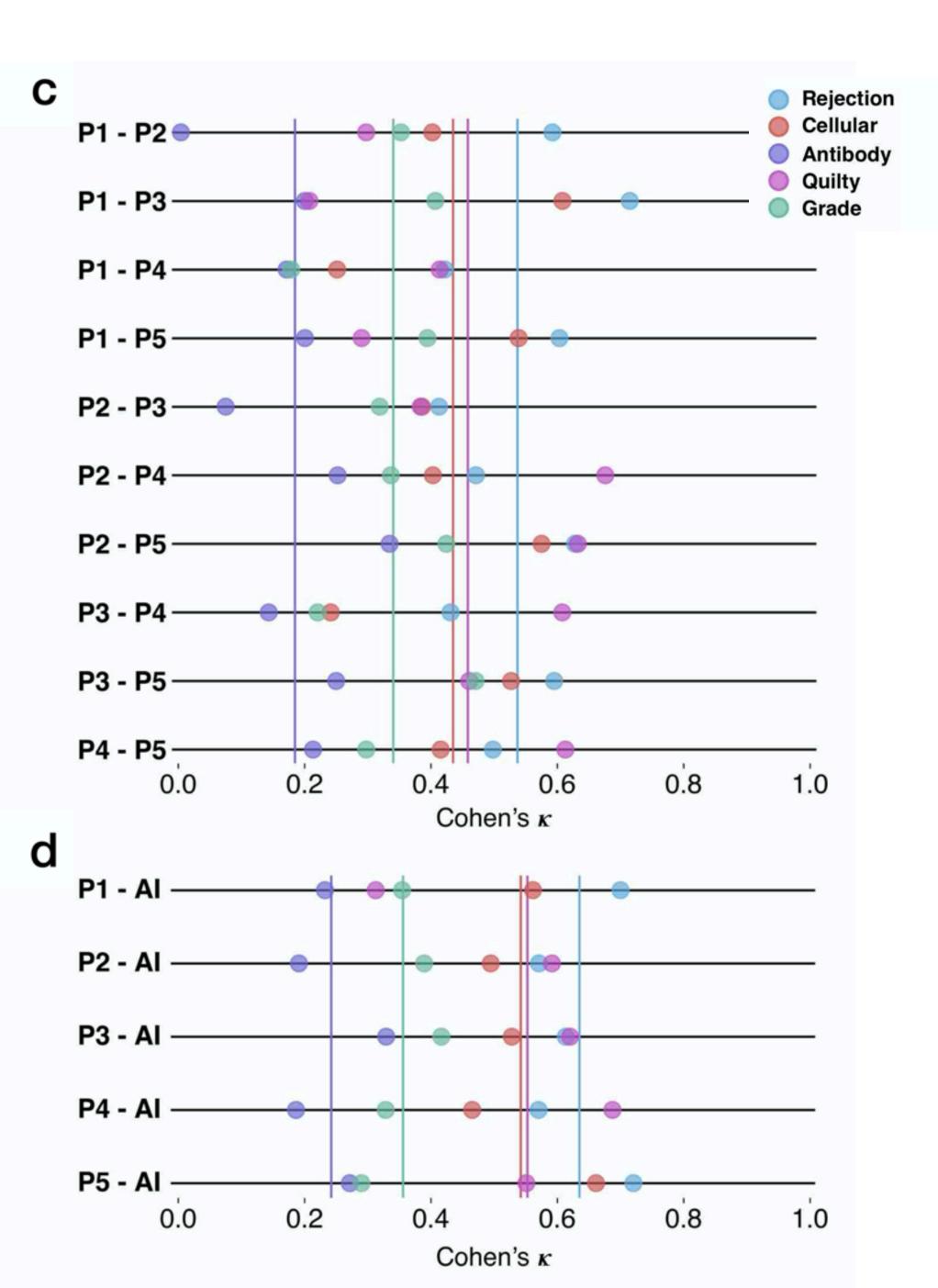
**Cohens'** κ (-1 to 1): inter-observer agreement: Agreement between expert is comparable to previous studies

For all tasks Al-predictions are not inferior to human experts:

avg. agreement on rejection between pathologists  $\kappa = 0.537$  (moderate agreement)

> avg. agreement between **pathologists and model**  $\kappa = 0.639$  (substantial agreement)

(avg. 10.5 years of experience)



## **Clinical Potential**

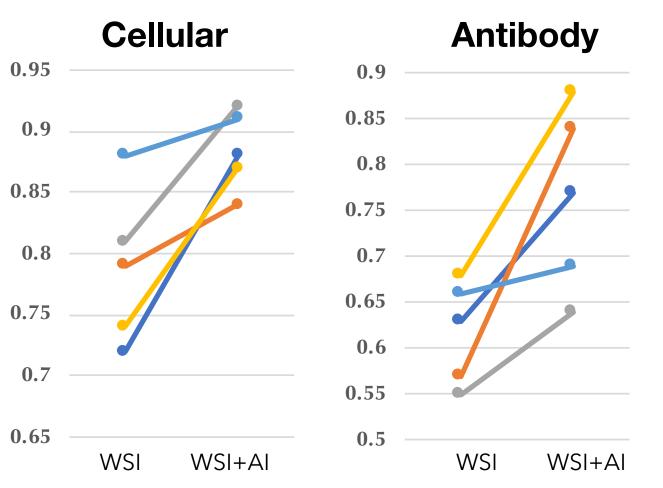
## **Ground-truth** labels:

consensus of readers from the first study

#### **Al-assistance**:

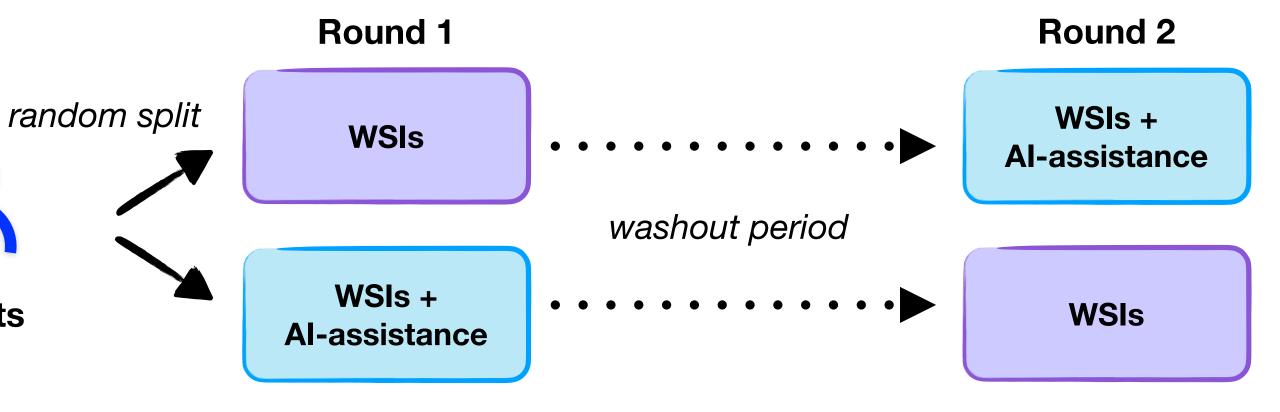
attention heatmaps as semitransparent layer at the top of H&E slide

# **Pathologists**

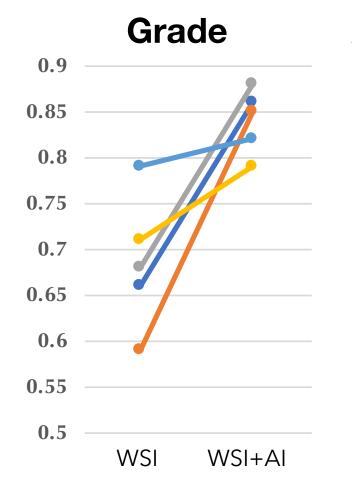


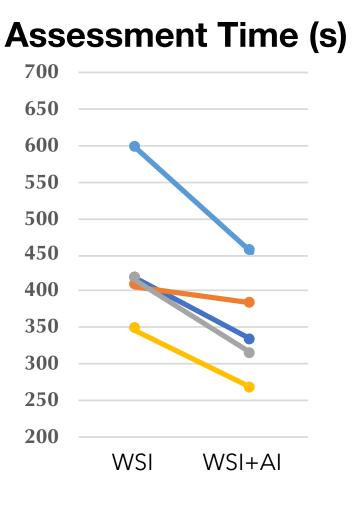
#### For all readers:

- **Increase accuracy**
- (i.e. reduce inter-rater variability)
- **Decrease assessment time**



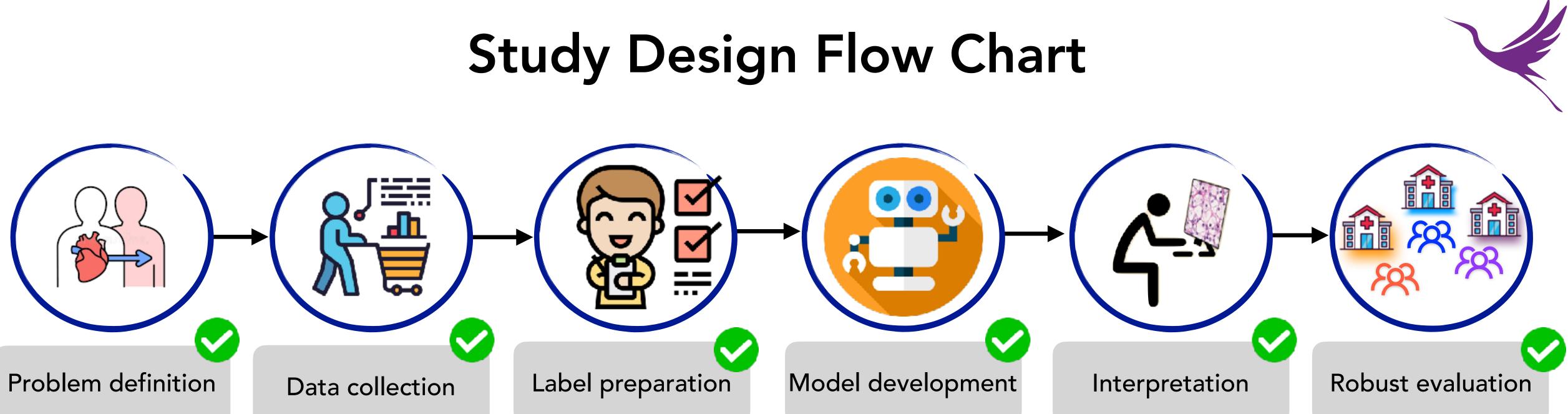




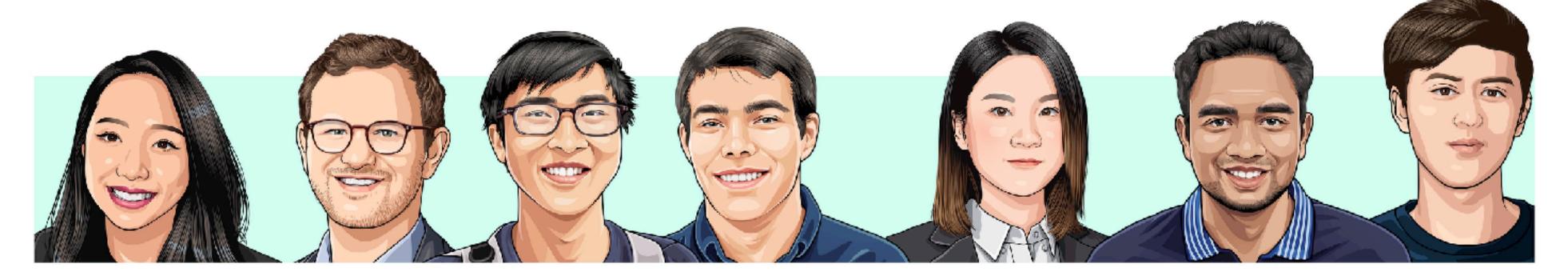


Lipkova et al. Nature Medicine (2022)













# The Mahmood Lab







BRIGHAM AND WOMEN'S HOSPITAL

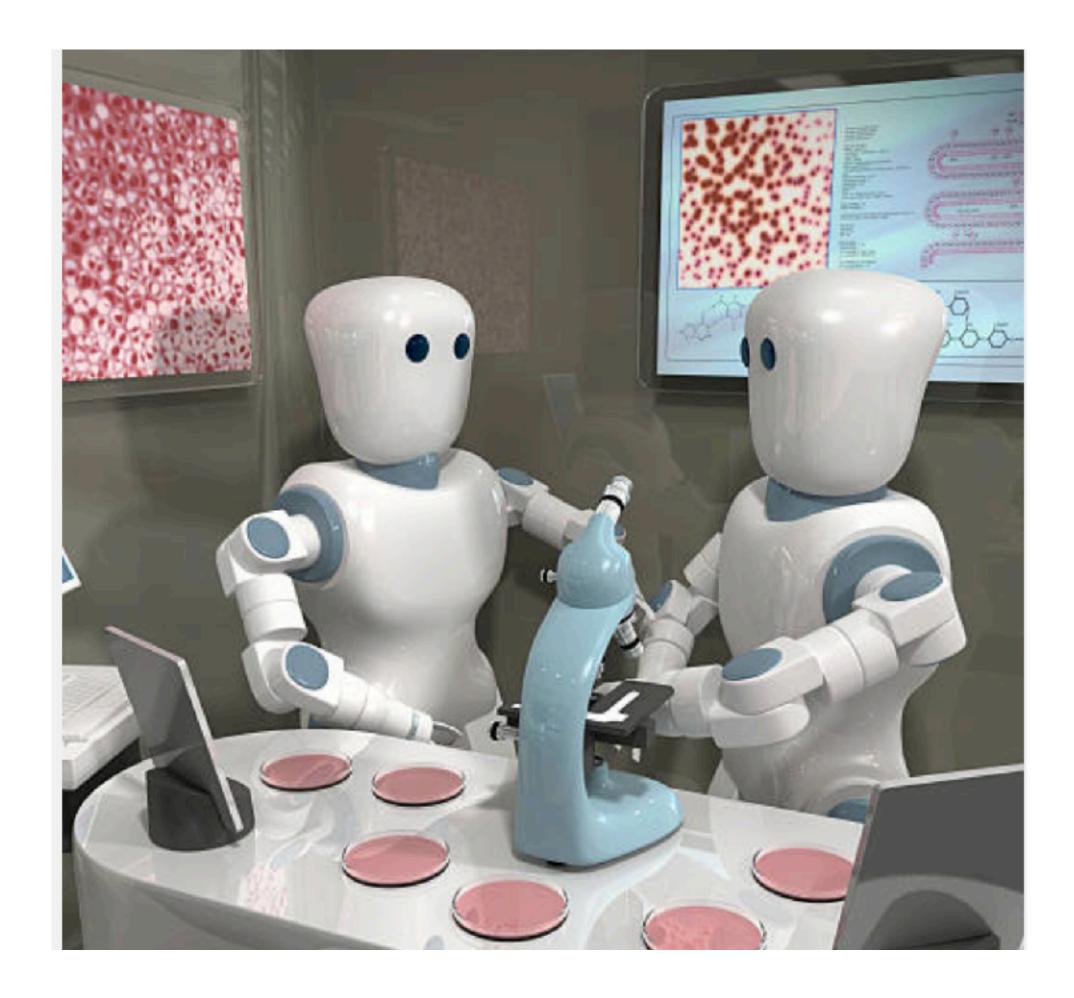






# WERE HIRING!







## **UC Irvine Health** School of Medicine